Loading…

Sparse optimization problems in fractional order Sobolev spaces

We consider optimization problems in the fractional order Sobolev spaces \(H^s(\Omega)\), \(s\in (0,1)\), with sparsity promoting objective functionals containing \(L^p\)-pseudonorms, \(p\in (0,1)\). Existence of solutions is proven. By means of a smoothing scheme, we obtain first-order optimality c...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Antil, Harbir, Wachsmuth, Daniel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Antil, Harbir
Wachsmuth, Daniel
description We consider optimization problems in the fractional order Sobolev spaces \(H^s(\Omega)\), \(s\in (0,1)\), with sparsity promoting objective functionals containing \(L^p\)-pseudonorms, \(p\in (0,1)\). Existence of solutions is proven. By means of a smoothing scheme, we obtain first-order optimality conditions. An algorithm based on this smoothing scheme is developed. Weak limit points of iterates are shown to satisfy a stationarity system that is slightly weaker than that given by the necessary condition.
doi_str_mv 10.48550/arxiv.2204.11456
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2655320985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655320985</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-440e0cd43d09a90b3a4d93813eb6ce5a107964411a214b0c943b1cc86fb83303</originalsourceid><addsrcrecordid>eNotj81KAzEURoMgWGofwF3A9Yw3uUmarESKP4WCi3FfbjIZmDJtxmRaxKd3RFcfnMXhfIzdCaiV1RoeKH_1l1pKULUQSpsrtpCIorJKyhu2KuUAANKspda4YI_NSLlEnsapP_bfNPXpxMec_BCPhfcn3mUKv5AGnnIbM2-ST0O88DJSiOWWXXc0lLj63yVrXp4_Nm_V7v11u3naVeS0qZSCCKFV2IIjBx5JtQ6twOhNiJoErJ1RSgiSQnkITqEXIVjTeYsIuGT3f9a57PMcy7Q_pHOem8pemvmHBGc1_gAK7Un-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655320985</pqid></control><display><type>article</type><title>Sparse optimization problems in fractional order Sobolev spaces</title><source>Publicly Available Content Database</source><creator>Antil, Harbir ; Wachsmuth, Daniel</creator><creatorcontrib>Antil, Harbir ; Wachsmuth, Daniel</creatorcontrib><description>We consider optimization problems in the fractional order Sobolev spaces \(H^s(\Omega)\), \(s\in (0,1)\), with sparsity promoting objective functionals containing \(L^p\)-pseudonorms, \(p\in (0,1)\). Existence of solutions is proven. By means of a smoothing scheme, we obtain first-order optimality conditions. An algorithm based on this smoothing scheme is developed. Weak limit points of iterates are shown to satisfy a stationarity system that is slightly weaker than that given by the necessary condition.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2204.11456</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Optimization ; Smoothing ; Sobolev space</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2655320985?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Antil, Harbir</creatorcontrib><creatorcontrib>Wachsmuth, Daniel</creatorcontrib><title>Sparse optimization problems in fractional order Sobolev spaces</title><title>arXiv.org</title><description>We consider optimization problems in the fractional order Sobolev spaces \(H^s(\Omega)\), \(s\in (0,1)\), with sparsity promoting objective functionals containing \(L^p\)-pseudonorms, \(p\in (0,1)\). Existence of solutions is proven. By means of a smoothing scheme, we obtain first-order optimality conditions. An algorithm based on this smoothing scheme is developed. Weak limit points of iterates are shown to satisfy a stationarity system that is slightly weaker than that given by the necessary condition.</description><subject>Algorithms</subject><subject>Optimization</subject><subject>Smoothing</subject><subject>Sobolev space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj81KAzEURoMgWGofwF3A9Yw3uUmarESKP4WCi3FfbjIZmDJtxmRaxKd3RFcfnMXhfIzdCaiV1RoeKH_1l1pKULUQSpsrtpCIorJKyhu2KuUAANKspda4YI_NSLlEnsapP_bfNPXpxMec_BCPhfcn3mUKv5AGnnIbM2-ST0O88DJSiOWWXXc0lLj63yVrXp4_Nm_V7v11u3naVeS0qZSCCKFV2IIjBx5JtQ6twOhNiJoErJ1RSgiSQnkITqEXIVjTeYsIuGT3f9a57PMcy7Q_pHOem8pemvmHBGc1_gAK7Un-</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Antil, Harbir</creator><creator>Wachsmuth, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230629</creationdate><title>Sparse optimization problems in fractional order Sobolev spaces</title><author>Antil, Harbir ; Wachsmuth, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-440e0cd43d09a90b3a4d93813eb6ce5a107964411a214b0c943b1cc86fb83303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Optimization</topic><topic>Smoothing</topic><topic>Sobolev space</topic><toplevel>online_resources</toplevel><creatorcontrib>Antil, Harbir</creatorcontrib><creatorcontrib>Wachsmuth, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antil, Harbir</au><au>Wachsmuth, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse optimization problems in fractional order Sobolev spaces</atitle><jtitle>arXiv.org</jtitle><date>2023-06-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider optimization problems in the fractional order Sobolev spaces \(H^s(\Omega)\), \(s\in (0,1)\), with sparsity promoting objective functionals containing \(L^p\)-pseudonorms, \(p\in (0,1)\). Existence of solutions is proven. By means of a smoothing scheme, we obtain first-order optimality conditions. An algorithm based on this smoothing scheme is developed. Weak limit points of iterates are shown to satisfy a stationarity system that is slightly weaker than that given by the necessary condition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2204.11456</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2655320985
source Publicly Available Content Database
subjects Algorithms
Optimization
Smoothing
Sobolev space
title Sparse optimization problems in fractional order Sobolev spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20optimization%20problems%20in%20fractional%20order%20Sobolev%20spaces&rft.jtitle=arXiv.org&rft.au=Antil,%20Harbir&rft.date=2023-06-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2204.11456&rft_dat=%3Cproquest%3E2655320985%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-440e0cd43d09a90b3a4d93813eb6ce5a107964411a214b0c943b1cc86fb83303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655320985&rft_id=info:pmid/&rfr_iscdi=true