Loading…

Helpful Statistics in Recognizing Basic Arabic Phonemes

The recognition of continuous speech is one of the main challenges in the building of automatic speech recognition (ASR) systems, especially when it comes to phonetically complex languages such as Arabic. An ASR system seems to be actually in a blocked alley. Nearly all solutions follow the same gen...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications 2017-01, Vol.8 (2)
Main Authors: O.M., Mohamed, Abdellah, Yousfi, O.M., Yahya, Belkasmi, Mostafa
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recognition of continuous speech is one of the main challenges in the building of automatic speech recognition (ASR) systems, especially when it comes to phonetically complex languages such as Arabic. An ASR system seems to be actually in a blocked alley. Nearly all solutions follow the same general model. The previous research focused on enhancing its performance by incorporating supplementary features. This paper is part of ongoing research efforts aimed at developing a high-performance Arabic speech recognition system for learning and teaching purposes. It investigates a statistical analysis of certain distinctive features of the basic Arabic phonemes which seems helpful in enhancing the performance of a baseline HMM-based ASR system. The statistics are collected using a particular Arabic speech database, which involves ten different male speakers and more than eight hours of speech which covers all Arabic phonemes. In HMM modeling framework, the statistics provided are helpful in establishing the appropriate number of HMM states for each phoneme and they can also be utilized as an initial condition for the EM estimation procedure, which generally, accelerates the estimation process and, thus, improves the performance of the system. The obtained findings are presented and possible applications of automatic speech recognition and speaker identification systems are also suggested.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2017.080231