Loading…

Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining

Electroencephalography is a measure of brain activity by wave analysis; it consist number of electrodes. Finding most non-dominant electrode positions in Eye state classification is important task for classification. The proposed work is identifying which electrodes are less responsible for classifi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications 2016-01, Vol.7 (7)
Main Authors: Sahu, Mridu, -, N.K.Nagwani, -, ShrishVerma
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 7
container_start_page
container_title International journal of advanced computer science & applications
container_volume 7
creator Sahu, Mridu
-, N.K.Nagwani
-, ShrishVerma
description Electroencephalography is a measure of brain activity by wave analysis; it consist number of electrodes. Finding most non-dominant electrode positions in Eye state classification is important task for classification. The proposed work is identifying which electrodes are less responsible for classification. This is a feature selection step required for optimal EEG channel selection. Feature selection is a mechanism for subset selection of input features, in this work input features are EEG Electrodes. Most Non Dominant (MND), gives irrelevant input electrodes in eye state classification and thus it, reduces computation cost. MND set creation completed using different stages. Stages includes, first extreme value removal from electroencephalogram (EEG) corpus for data cleaning purpose. Then next step is attribute selection, this is a preprocessing step because it is completed before classification step. MND set gives electrodes they are less responsible for classification and if any EEG electrode corpus wants to remove feature present in this set, then time and space required to build the classification model is (20%) less than as compare to all electrodes for the same, and accuracy of classification not very much affected. The proposed article uses different attribute evaluation algorithm with Ranker Search Method.
doi_str_mv 10.14569/IJACSA.2016.070748
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656467000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656467000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-9a6218252206bb969ec066801e4e2a7b57d68399803daeed34882ca6880a77dd3</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhC0EElXpE3CxxAUOKbaT2M6xCmkp4k8UJG6WGzutq9QOdnLo25M2sJcdrVYzmg-Aa4ymOElpdr98muWr2ZQgTKeIIZbwMzAiOKVRmjJ0ftI8woh9X4JJCDvUT5wRyuMR6ObGKmM38NVZ-OD2xkrbwqLWZeud0gG-17LUChr7f9S21M1W1m7jZbM9wNuiWNzBynlYHDRctbLVMK9lCKYypWxN79uFY8JHV2v4Ymyvr8BFJeugJ397DL7mxWf-GD2_LZb57DkqCSJtlElKMCcpIYiu1xnNdIko5QjrRBPJ1ilTfYks4yhWUmsVJ5yTUlLOkWRMqXgMbgbfxrufTodW7FznbR8pCE1pQtkRxRjEw1fpXQheV6LxZi_9QWAkTojFgFgcEYsBcfwLGbRufA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656467000</pqid></control><display><type>article</type><title>Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining</title><source>Publicly Available Content Database</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Sahu, Mridu ; -, N.K.Nagwani ; -, ShrishVerma</creator><creatorcontrib>Sahu, Mridu ; -, N.K.Nagwani ; -, ShrishVerma</creatorcontrib><description>Electroencephalography is a measure of brain activity by wave analysis; it consist number of electrodes. Finding most non-dominant electrode positions in Eye state classification is important task for classification. The proposed work is identifying which electrodes are less responsible for classification. This is a feature selection step required for optimal EEG channel selection. Feature selection is a mechanism for subset selection of input features, in this work input features are EEG Electrodes. Most Non Dominant (MND), gives irrelevant input electrodes in eye state classification and thus it, reduces computation cost. MND set creation completed using different stages. Stages includes, first extreme value removal from electroencephalogram (EEG) corpus for data cleaning purpose. Then next step is attribute selection, this is a preprocessing step because it is completed before classification step. MND set gives electrodes they are less responsible for classification and if any EEG electrode corpus wants to remove feature present in this set, then time and space required to build the classification model is (20%) less than as compare to all electrodes for the same, and accuracy of classification not very much affected. The proposed article uses different attribute evaluation algorithm with Ranker Search Method.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2016.070748</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Classification ; Electrodes ; Electroencephalography ; Extreme values ; Feature selection</subject><ispartof>International journal of advanced computer science &amp; applications, 2016-01, Vol.7 (7)</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2656467000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25728,27898,27899,36986,44563</link.rule.ids></links><search><creatorcontrib>Sahu, Mridu</creatorcontrib><creatorcontrib>-, N.K.Nagwani</creatorcontrib><creatorcontrib>-, ShrishVerma</creatorcontrib><title>Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining</title><title>International journal of advanced computer science &amp; applications</title><description>Electroencephalography is a measure of brain activity by wave analysis; it consist number of electrodes. Finding most non-dominant electrode positions in Eye state classification is important task for classification. The proposed work is identifying which electrodes are less responsible for classification. This is a feature selection step required for optimal EEG channel selection. Feature selection is a mechanism for subset selection of input features, in this work input features are EEG Electrodes. Most Non Dominant (MND), gives irrelevant input electrodes in eye state classification and thus it, reduces computation cost. MND set creation completed using different stages. Stages includes, first extreme value removal from electroencephalogram (EEG) corpus for data cleaning purpose. Then next step is attribute selection, this is a preprocessing step because it is completed before classification step. MND set gives electrodes they are less responsible for classification and if any EEG electrode corpus wants to remove feature present in this set, then time and space required to build the classification model is (20%) less than as compare to all electrodes for the same, and accuracy of classification not very much affected. The proposed article uses different attribute evaluation algorithm with Ranker Search Method.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Extreme values</subject><subject>Feature selection</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1kM1OwzAQhC0EElXpE3CxxAUOKbaT2M6xCmkp4k8UJG6WGzutq9QOdnLo25M2sJcdrVYzmg-Aa4ymOElpdr98muWr2ZQgTKeIIZbwMzAiOKVRmjJ0ftI8woh9X4JJCDvUT5wRyuMR6ObGKmM38NVZ-OD2xkrbwqLWZeud0gG-17LUChr7f9S21M1W1m7jZbM9wNuiWNzBynlYHDRctbLVMK9lCKYypWxN79uFY8JHV2v4Ymyvr8BFJeugJ397DL7mxWf-GD2_LZb57DkqCSJtlElKMCcpIYiu1xnNdIko5QjrRBPJ1ilTfYks4yhWUmsVJ5yTUlLOkWRMqXgMbgbfxrufTodW7FznbR8pCE1pQtkRxRjEw1fpXQheV6LxZi_9QWAkTojFgFgcEYsBcfwLGbRufA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Sahu, Mridu</creator><creator>-, N.K.Nagwani</creator><creator>-, ShrishVerma</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining</title><author>Sahu, Mridu ; -, N.K.Nagwani ; -, ShrishVerma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-9a6218252206bb969ec066801e4e2a7b57d68399803daeed34882ca6880a77dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Extreme values</topic><topic>Feature selection</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Mridu</creatorcontrib><creatorcontrib>-, N.K.Nagwani</creatorcontrib><creatorcontrib>-, ShrishVerma</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Mridu</au><au>-, N.K.Nagwani</au><au>-, ShrishVerma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>7</volume><issue>7</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Electroencephalography is a measure of brain activity by wave analysis; it consist number of electrodes. Finding most non-dominant electrode positions in Eye state classification is important task for classification. The proposed work is identifying which electrodes are less responsible for classification. This is a feature selection step required for optimal EEG channel selection. Feature selection is a mechanism for subset selection of input features, in this work input features are EEG Electrodes. Most Non Dominant (MND), gives irrelevant input electrodes in eye state classification and thus it, reduces computation cost. MND set creation completed using different stages. Stages includes, first extreme value removal from electroencephalogram (EEG) corpus for data cleaning purpose. Then next step is attribute selection, this is a preprocessing step because it is completed before classification step. MND set gives electrodes they are less responsible for classification and if any EEG electrode corpus wants to remove feature present in this set, then time and space required to build the classification model is (20%) less than as compare to all electrodes for the same, and accuracy of classification not very much affected. The proposed article uses different attribute evaluation algorithm with Ranker Search Method.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2016.070748</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2016-01, Vol.7 (7)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2656467000
source Publicly Available Content Database; Free E-Journal (出版社公開部分のみ)
subjects Algorithms
Classification
Electrodes
Electroencephalography
Extreme values
Feature selection
title Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T02%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Non%20Dominant%20Electrodes%20Placed%20in%20Electroencephalography%20(EEG)%20for%20Eye%20State%20Classification%20using%20Rule%20Mining&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Sahu,%20Mridu&rft.date=2016-01-01&rft.volume=7&rft.issue=7&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2016.070748&rft_dat=%3Cproquest_cross%3E2656467000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c202t-9a6218252206bb969ec066801e4e2a7b57d68399803daeed34882ca6880a77dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656467000&rft_id=info:pmid/&rfr_iscdi=true