Loading…
HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling
4D human sensing and modeling are fundamental tasks in vision and graphics with numerous applications. With the advances of new sensors and algorithms, there is an increasing demand for more versatile datasets. In this work, we contribute HuMMan, a large-scale multi-modal 4D human dataset with 1000...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cai, Zhongang Ren, Daxuan Zeng, Ailing Lin, Zhengyu Yu, Tao Wang, Wenjia Fan, Xiangyu Gao, Yang Yu, Yifan Pan, Liang Hong, Fangzhou Zhang, Mingyuan Chen Change Loy Yang, Lei Liu, Ziwei |
description | 4D human sensing and modeling are fundamental tasks in vision and graphics with numerous applications. With the advances of new sensors and algorithms, there is an increasing demand for more versatile datasets. In this work, we contribute HuMMan, a large-scale multi-modal 4D human dataset with 1000 human subjects, 400k sequences and 60M frames. HuMMan has several appealing properties: 1) multi-modal data and annotations including color images, point clouds, keypoints, SMPL parameters, and textured meshes; 2) popular mobile device is included in the sensor suite; 3) a set of 500 actions, designed to cover fundamental movements; 4) multiple tasks such as action recognition, pose estimation, parametric human recovery, and textured mesh reconstruction are supported and evaluated. Extensive experiments on HuMMan voice the need for further study on challenges such as fine-grained action recognition, dynamic human mesh reconstruction, point cloud-based parametric human recovery, and cross-device domain gaps. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2656973009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656973009</sourcerecordid><originalsourceid>FETCH-proquest_journals_26569730093</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgWLTvcMG5EJP-WFerdsmkdC0XmkpLTDQ3eX87-ABOH4dzvhVLhJSH7JgLsWEp0cw5F2UlikIm7NZGpdCeQEUTpky5AQ3kDbTxhRYaDEg6wOg8dNoThslouGtLk30C2gGWgzYL7Nh6REM6_e2W7a-Xx7nN3t59oqbQzy56u6helEVZV5LzWv5XfQEsJDo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656973009</pqid></control><display><type>article</type><title>HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling</title><source>Publicly Available Content Database</source><creator>Cai, Zhongang ; Ren, Daxuan ; Zeng, Ailing ; Lin, Zhengyu ; Yu, Tao ; Wang, Wenjia ; Fan, Xiangyu ; Gao, Yang ; Yu, Yifan ; Pan, Liang ; Hong, Fangzhou ; Zhang, Mingyuan ; Chen Change Loy ; Yang, Lei ; Liu, Ziwei</creator><creatorcontrib>Cai, Zhongang ; Ren, Daxuan ; Zeng, Ailing ; Lin, Zhengyu ; Yu, Tao ; Wang, Wenjia ; Fan, Xiangyu ; Gao, Yang ; Yu, Yifan ; Pan, Liang ; Hong, Fangzhou ; Zhang, Mingyuan ; Chen Change Loy ; Yang, Lei ; Liu, Ziwei</creatorcontrib><description>4D human sensing and modeling are fundamental tasks in vision and graphics with numerous applications. With the advances of new sensors and algorithms, there is an increasing demand for more versatile datasets. In this work, we contribute HuMMan, a large-scale multi-modal 4D human dataset with 1000 human subjects, 400k sequences and 60M frames. HuMMan has several appealing properties: 1) multi-modal data and annotations including color images, point clouds, keypoints, SMPL parameters, and textured meshes; 2) popular mobile device is included in the sensor suite; 3) a set of 500 actions, designed to cover fundamental movements; 4) multiple tasks such as action recognition, pose estimation, parametric human recovery, and textured mesh reconstruction are supported and evaluated. Extensive experiments on HuMMan voice the need for further study on challenges such as fine-grained action recognition, dynamic human mesh reconstruction, point cloud-based parametric human recovery, and cross-device domain gaps.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Activity recognition ; Algorithms ; Annotations ; Color imagery ; Datasets ; Electronic devices ; Finite element method ; Image reconstruction ; Modal data ; Modelling ; Pose estimation ; Recovery</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2656973009?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Cai, Zhongang</creatorcontrib><creatorcontrib>Ren, Daxuan</creatorcontrib><creatorcontrib>Zeng, Ailing</creatorcontrib><creatorcontrib>Lin, Zhengyu</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Wang, Wenjia</creatorcontrib><creatorcontrib>Fan, Xiangyu</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Yu, Yifan</creatorcontrib><creatorcontrib>Pan, Liang</creatorcontrib><creatorcontrib>Hong, Fangzhou</creatorcontrib><creatorcontrib>Zhang, Mingyuan</creatorcontrib><creatorcontrib>Chen Change Loy</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Liu, Ziwei</creatorcontrib><title>HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling</title><title>arXiv.org</title><description>4D human sensing and modeling are fundamental tasks in vision and graphics with numerous applications. With the advances of new sensors and algorithms, there is an increasing demand for more versatile datasets. In this work, we contribute HuMMan, a large-scale multi-modal 4D human dataset with 1000 human subjects, 400k sequences and 60M frames. HuMMan has several appealing properties: 1) multi-modal data and annotations including color images, point clouds, keypoints, SMPL parameters, and textured meshes; 2) popular mobile device is included in the sensor suite; 3) a set of 500 actions, designed to cover fundamental movements; 4) multiple tasks such as action recognition, pose estimation, parametric human recovery, and textured mesh reconstruction are supported and evaluated. Extensive experiments on HuMMan voice the need for further study on challenges such as fine-grained action recognition, dynamic human mesh reconstruction, point cloud-based parametric human recovery, and cross-device domain gaps.</description><subject>Activity recognition</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Color imagery</subject><subject>Datasets</subject><subject>Electronic devices</subject><subject>Finite element method</subject><subject>Image reconstruction</subject><subject>Modal data</subject><subject>Modelling</subject><subject>Pose estimation</subject><subject>Recovery</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi70KwjAURoMgWLTvcMG5EJP-WFerdsmkdC0XmkpLTDQ3eX87-ABOH4dzvhVLhJSH7JgLsWEp0cw5F2UlikIm7NZGpdCeQEUTpky5AQ3kDbTxhRYaDEg6wOg8dNoThslouGtLk30C2gGWgzYL7Nh6REM6_e2W7a-Xx7nN3t59oqbQzy56u6helEVZV5LzWv5XfQEsJDo1</recordid><startdate>20230416</startdate><enddate>20230416</enddate><creator>Cai, Zhongang</creator><creator>Ren, Daxuan</creator><creator>Zeng, Ailing</creator><creator>Lin, Zhengyu</creator><creator>Yu, Tao</creator><creator>Wang, Wenjia</creator><creator>Fan, Xiangyu</creator><creator>Gao, Yang</creator><creator>Yu, Yifan</creator><creator>Pan, Liang</creator><creator>Hong, Fangzhou</creator><creator>Zhang, Mingyuan</creator><creator>Chen Change Loy</creator><creator>Yang, Lei</creator><creator>Liu, Ziwei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230416</creationdate><title>HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling</title><author>Cai, Zhongang ; Ren, Daxuan ; Zeng, Ailing ; Lin, Zhengyu ; Yu, Tao ; Wang, Wenjia ; Fan, Xiangyu ; Gao, Yang ; Yu, Yifan ; Pan, Liang ; Hong, Fangzhou ; Zhang, Mingyuan ; Chen Change Loy ; Yang, Lei ; Liu, Ziwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26569730093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activity recognition</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Color imagery</topic><topic>Datasets</topic><topic>Electronic devices</topic><topic>Finite element method</topic><topic>Image reconstruction</topic><topic>Modal data</topic><topic>Modelling</topic><topic>Pose estimation</topic><topic>Recovery</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhongang</creatorcontrib><creatorcontrib>Ren, Daxuan</creatorcontrib><creatorcontrib>Zeng, Ailing</creatorcontrib><creatorcontrib>Lin, Zhengyu</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Wang, Wenjia</creatorcontrib><creatorcontrib>Fan, Xiangyu</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Yu, Yifan</creatorcontrib><creatorcontrib>Pan, Liang</creatorcontrib><creatorcontrib>Hong, Fangzhou</creatorcontrib><creatorcontrib>Zhang, Mingyuan</creatorcontrib><creatorcontrib>Chen Change Loy</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Liu, Ziwei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhongang</au><au>Ren, Daxuan</au><au>Zeng, Ailing</au><au>Lin, Zhengyu</au><au>Yu, Tao</au><au>Wang, Wenjia</au><au>Fan, Xiangyu</au><au>Gao, Yang</au><au>Yu, Yifan</au><au>Pan, Liang</au><au>Hong, Fangzhou</au><au>Zhang, Mingyuan</au><au>Chen Change Loy</au><au>Yang, Lei</au><au>Liu, Ziwei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling</atitle><jtitle>arXiv.org</jtitle><date>2023-04-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>4D human sensing and modeling are fundamental tasks in vision and graphics with numerous applications. With the advances of new sensors and algorithms, there is an increasing demand for more versatile datasets. In this work, we contribute HuMMan, a large-scale multi-modal 4D human dataset with 1000 human subjects, 400k sequences and 60M frames. HuMMan has several appealing properties: 1) multi-modal data and annotations including color images, point clouds, keypoints, SMPL parameters, and textured meshes; 2) popular mobile device is included in the sensor suite; 3) a set of 500 actions, designed to cover fundamental movements; 4) multiple tasks such as action recognition, pose estimation, parametric human recovery, and textured mesh reconstruction are supported and evaluated. Extensive experiments on HuMMan voice the need for further study on challenges such as fine-grained action recognition, dynamic human mesh reconstruction, point cloud-based parametric human recovery, and cross-device domain gaps.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2656973009 |
source | Publicly Available Content Database |
subjects | Activity recognition Algorithms Annotations Color imagery Datasets Electronic devices Finite element method Image reconstruction Modal data Modelling Pose estimation Recovery |
title | HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HuMMan:%20Multi-Modal%204D%20Human%20Dataset%20for%20Versatile%20Sensing%20and%20Modeling&rft.jtitle=arXiv.org&rft.au=Cai,%20Zhongang&rft.date=2023-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2656973009%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26569730093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656973009&rft_id=info:pmid/&rfr_iscdi=true |