Loading…
Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)
One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabr...
Saved in:
Published in: | Transport in porous media 2022-03, Vol.142 (1-2), p.265-293 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093 |
container_end_page | 293 |
container_issue | 1-2 |
container_start_page | 265 |
container_title | Transport in porous media |
container_volume | 142 |
creator | Iranmanesh, Pedram Ehsani, Athena Khademi, Abbasali Asefnejad, Azadeh Shahriari, Sheyda Soleimani, Maryam Ghadiri Nejad, Mazyar Saber-Samandari, Saeed Khandan, Amirsalar |
description | One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed. |
doi_str_mv | 10.1007/s11242-021-01618-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656974782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656974782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAix6ik2Q_j7WtH1CwSD2HbDZZt9RkTXah_ntTV_DmaWB4n3eYB6FLCrcUIL8LlLKEEWCUAM1oQfZHaELTnBOa8eQYTeK2JLyk_BSdhbAFiFiRTFAz67pdq2TfOoudwXyB71vX-db22gdsnMcLbXu5w-th1-FX3Wir_RiXtsabNoRB46VtWqt1xBp8vXbeDQFLr97bXqt-8PrmHJ0YuQv64ndO0dvDcjN_IquXx-f5bEUUp2VPKmlYxQpmJK9B57mUUhU1pGldpAk3CaSgaFmYPM8yAF5UJags1TXUSlYSSj5FV2Nv593noEMvtm7wNp4ULEuzMk_ygsUUG1PKuxC8NiJ-_CH9l6AgDkLFKFREoeJHqNhHiI9QOOhptP-r_of6Bn45ee4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656974782</pqid></control><display><type>article</type><title>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</title><source>Springer Nature</source><creator>Iranmanesh, Pedram ; Ehsani, Athena ; Khademi, Abbasali ; Asefnejad, Azadeh ; Shahriari, Sheyda ; Soleimani, Maryam ; Ghadiri Nejad, Mazyar ; Saber-Samandari, Saeed ; Khandan, Amirsalar</creator><creatorcontrib>Iranmanesh, Pedram ; Ehsani, Athena ; Khademi, Abbasali ; Asefnejad, Azadeh ; Shahriari, Sheyda ; Soleimani, Maryam ; Ghadiri Nejad, Mazyar ; Saber-Samandari, Saeed ; Khandan, Amirsalar</creatorcontrib><description>One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-021-01618-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>3-D printers ; CAD ; Civil Engineering ; Classical and Continuum Physics ; Computed tomography ; Computer aided design ; Dental materials ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Medical science ; Scaffolds ; Three dimensional printing ; Tissue engineering</subject><ispartof>Transport in porous media, 2022-03, Vol.142 (1-2), p.265-293</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</citedby><cites>FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</cites><orcidid>0000-0001-8878-5233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Iranmanesh, Pedram</creatorcontrib><creatorcontrib>Ehsani, Athena</creatorcontrib><creatorcontrib>Khademi, Abbasali</creatorcontrib><creatorcontrib>Asefnejad, Azadeh</creatorcontrib><creatorcontrib>Shahriari, Sheyda</creatorcontrib><creatorcontrib>Soleimani, Maryam</creatorcontrib><creatorcontrib>Ghadiri Nejad, Mazyar</creatorcontrib><creatorcontrib>Saber-Samandari, Saeed</creatorcontrib><creatorcontrib>Khandan, Amirsalar</creatorcontrib><title>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.</description><subject>3-D printers</subject><subject>CAD</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computed tomography</subject><subject>Computer aided design</subject><subject>Dental materials</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Medical science</subject><subject>Scaffolds</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAix6ik2Q_j7WtH1CwSD2HbDZZt9RkTXah_ntTV_DmaWB4n3eYB6FLCrcUIL8LlLKEEWCUAM1oQfZHaELTnBOa8eQYTeK2JLyk_BSdhbAFiFiRTFAz67pdq2TfOoudwXyB71vX-db22gdsnMcLbXu5w-th1-FX3Wir_RiXtsabNoRB46VtWqt1xBp8vXbeDQFLr97bXqt-8PrmHJ0YuQv64ndO0dvDcjN_IquXx-f5bEUUp2VPKmlYxQpmJK9B57mUUhU1pGldpAk3CaSgaFmYPM8yAF5UJags1TXUSlYSSj5FV2Nv593noEMvtm7wNp4ULEuzMk_ygsUUG1PKuxC8NiJ-_CH9l6AgDkLFKFREoeJHqNhHiI9QOOhptP-r_of6Bn45ee4</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Iranmanesh, Pedram</creator><creator>Ehsani, Athena</creator><creator>Khademi, Abbasali</creator><creator>Asefnejad, Azadeh</creator><creator>Shahriari, Sheyda</creator><creator>Soleimani, Maryam</creator><creator>Ghadiri Nejad, Mazyar</creator><creator>Saber-Samandari, Saeed</creator><creator>Khandan, Amirsalar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8878-5233</orcidid></search><sort><creationdate>20220301</creationdate><title>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</title><author>Iranmanesh, Pedram ; Ehsani, Athena ; Khademi, Abbasali ; Asefnejad, Azadeh ; Shahriari, Sheyda ; Soleimani, Maryam ; Ghadiri Nejad, Mazyar ; Saber-Samandari, Saeed ; Khandan, Amirsalar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>CAD</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computed tomography</topic><topic>Computer aided design</topic><topic>Dental materials</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Medical science</topic><topic>Scaffolds</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iranmanesh, Pedram</creatorcontrib><creatorcontrib>Ehsani, Athena</creatorcontrib><creatorcontrib>Khademi, Abbasali</creatorcontrib><creatorcontrib>Asefnejad, Azadeh</creatorcontrib><creatorcontrib>Shahriari, Sheyda</creatorcontrib><creatorcontrib>Soleimani, Maryam</creatorcontrib><creatorcontrib>Ghadiri Nejad, Mazyar</creatorcontrib><creatorcontrib>Saber-Samandari, Saeed</creatorcontrib><creatorcontrib>Khandan, Amirsalar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iranmanesh, Pedram</au><au>Ehsani, Athena</au><au>Khademi, Abbasali</au><au>Asefnejad, Azadeh</au><au>Shahriari, Sheyda</au><au>Soleimani, Maryam</au><au>Ghadiri Nejad, Mazyar</au><au>Saber-Samandari, Saeed</au><au>Khandan, Amirsalar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>142</volume><issue>1-2</issue><spage>265</spage><epage>293</epage><pages>265-293</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-021-01618-x</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-8878-5233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2022-03, Vol.142 (1-2), p.265-293 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2656974782 |
source | Springer Nature |
subjects | 3-D printers CAD Civil Engineering Classical and Continuum Physics Computed tomography Computer aided design Dental materials Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Medical science Scaffolds Three dimensional printing Tissue engineering |
title | Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%203D%20Bioprinters%20for%20Dental%20Pulp%20Regeneration%20and%20Tissue%20Engineering%20(Porous%20architecture)&rft.jtitle=Transport%20in%20porous%20media&rft.au=Iranmanesh,%20Pedram&rft.date=2022-03-01&rft.volume=142&rft.issue=1-2&rft.spage=265&rft.epage=293&rft.pages=265-293&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-021-01618-x&rft_dat=%3Cproquest_cross%3E2656974782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656974782&rft_id=info:pmid/&rfr_iscdi=true |