Loading…

Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)

One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabr...

Full description

Saved in:
Bibliographic Details
Published in:Transport in porous media 2022-03, Vol.142 (1-2), p.265-293
Main Authors: Iranmanesh, Pedram, Ehsani, Athena, Khademi, Abbasali, Asefnejad, Azadeh, Shahriari, Sheyda, Soleimani, Maryam, Ghadiri Nejad, Mazyar, Saber-Samandari, Saeed, Khandan, Amirsalar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093
cites cdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093
container_end_page 293
container_issue 1-2
container_start_page 265
container_title Transport in porous media
container_volume 142
creator Iranmanesh, Pedram
Ehsani, Athena
Khademi, Abbasali
Asefnejad, Azadeh
Shahriari, Sheyda
Soleimani, Maryam
Ghadiri Nejad, Mazyar
Saber-Samandari, Saeed
Khandan, Amirsalar
description One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.
doi_str_mv 10.1007/s11242-021-01618-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656974782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656974782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAix6ik2Q_j7WtH1CwSD2HbDZZt9RkTXah_ntTV_DmaWB4n3eYB6FLCrcUIL8LlLKEEWCUAM1oQfZHaELTnBOa8eQYTeK2JLyk_BSdhbAFiFiRTFAz67pdq2TfOoudwXyB71vX-db22gdsnMcLbXu5w-th1-FX3Wir_RiXtsabNoRB46VtWqt1xBp8vXbeDQFLr97bXqt-8PrmHJ0YuQv64ndO0dvDcjN_IquXx-f5bEUUp2VPKmlYxQpmJK9B57mUUhU1pGldpAk3CaSgaFmYPM8yAF5UJags1TXUSlYSSj5FV2Nv593noEMvtm7wNp4ULEuzMk_ygsUUG1PKuxC8NiJ-_CH9l6AgDkLFKFREoeJHqNhHiI9QOOhptP-r_of6Bn45ee4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656974782</pqid></control><display><type>article</type><title>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</title><source>Springer Nature</source><creator>Iranmanesh, Pedram ; Ehsani, Athena ; Khademi, Abbasali ; Asefnejad, Azadeh ; Shahriari, Sheyda ; Soleimani, Maryam ; Ghadiri Nejad, Mazyar ; Saber-Samandari, Saeed ; Khandan, Amirsalar</creator><creatorcontrib>Iranmanesh, Pedram ; Ehsani, Athena ; Khademi, Abbasali ; Asefnejad, Azadeh ; Shahriari, Sheyda ; Soleimani, Maryam ; Ghadiri Nejad, Mazyar ; Saber-Samandari, Saeed ; Khandan, Amirsalar</creatorcontrib><description>One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-021-01618-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>3-D printers ; CAD ; Civil Engineering ; Classical and Continuum Physics ; Computed tomography ; Computer aided design ; Dental materials ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Medical science ; Scaffolds ; Three dimensional printing ; Tissue engineering</subject><ispartof>Transport in porous media, 2022-03, Vol.142 (1-2), p.265-293</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</citedby><cites>FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</cites><orcidid>0000-0001-8878-5233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Iranmanesh, Pedram</creatorcontrib><creatorcontrib>Ehsani, Athena</creatorcontrib><creatorcontrib>Khademi, Abbasali</creatorcontrib><creatorcontrib>Asefnejad, Azadeh</creatorcontrib><creatorcontrib>Shahriari, Sheyda</creatorcontrib><creatorcontrib>Soleimani, Maryam</creatorcontrib><creatorcontrib>Ghadiri Nejad, Mazyar</creatorcontrib><creatorcontrib>Saber-Samandari, Saeed</creatorcontrib><creatorcontrib>Khandan, Amirsalar</creatorcontrib><title>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.</description><subject>3-D printers</subject><subject>CAD</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computed tomography</subject><subject>Computer aided design</subject><subject>Dental materials</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Medical science</subject><subject>Scaffolds</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAix6ik2Q_j7WtH1CwSD2HbDZZt9RkTXah_ntTV_DmaWB4n3eYB6FLCrcUIL8LlLKEEWCUAM1oQfZHaELTnBOa8eQYTeK2JLyk_BSdhbAFiFiRTFAz67pdq2TfOoudwXyB71vX-db22gdsnMcLbXu5w-th1-FX3Wir_RiXtsabNoRB46VtWqt1xBp8vXbeDQFLr97bXqt-8PrmHJ0YuQv64ndO0dvDcjN_IquXx-f5bEUUp2VPKmlYxQpmJK9B57mUUhU1pGldpAk3CaSgaFmYPM8yAF5UJags1TXUSlYSSj5FV2Nv593noEMvtm7wNp4ULEuzMk_ygsUUG1PKuxC8NiJ-_CH9l6AgDkLFKFREoeJHqNhHiI9QOOhptP-r_of6Bn45ee4</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Iranmanesh, Pedram</creator><creator>Ehsani, Athena</creator><creator>Khademi, Abbasali</creator><creator>Asefnejad, Azadeh</creator><creator>Shahriari, Sheyda</creator><creator>Soleimani, Maryam</creator><creator>Ghadiri Nejad, Mazyar</creator><creator>Saber-Samandari, Saeed</creator><creator>Khandan, Amirsalar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8878-5233</orcidid></search><sort><creationdate>20220301</creationdate><title>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</title><author>Iranmanesh, Pedram ; Ehsani, Athena ; Khademi, Abbasali ; Asefnejad, Azadeh ; Shahriari, Sheyda ; Soleimani, Maryam ; Ghadiri Nejad, Mazyar ; Saber-Samandari, Saeed ; Khandan, Amirsalar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>CAD</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computed tomography</topic><topic>Computer aided design</topic><topic>Dental materials</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Medical science</topic><topic>Scaffolds</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iranmanesh, Pedram</creatorcontrib><creatorcontrib>Ehsani, Athena</creatorcontrib><creatorcontrib>Khademi, Abbasali</creatorcontrib><creatorcontrib>Asefnejad, Azadeh</creatorcontrib><creatorcontrib>Shahriari, Sheyda</creatorcontrib><creatorcontrib>Soleimani, Maryam</creatorcontrib><creatorcontrib>Ghadiri Nejad, Mazyar</creatorcontrib><creatorcontrib>Saber-Samandari, Saeed</creatorcontrib><creatorcontrib>Khandan, Amirsalar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iranmanesh, Pedram</au><au>Ehsani, Athena</au><au>Khademi, Abbasali</au><au>Asefnejad, Azadeh</au><au>Shahriari, Sheyda</au><au>Soleimani, Maryam</au><au>Ghadiri Nejad, Mazyar</au><au>Saber-Samandari, Saeed</au><au>Khandan, Amirsalar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>142</volume><issue>1-2</issue><spage>265</spage><epage>293</epage><pages>265-293</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>One of the well-known ways to produce porous scaffolds or special three-dimensional (3D) micro-nanostructures is using the 3D printing technique. This technique requires a suitable computerized model of the scaffold using computer-aided design software or the computed tomography. The 3D printer fabricates a product by using a digital file and creates a layer-by-layer physical sample. Integrating different technologies and materials into one operational procedure can produce 3D tissue engineering scaffolds with enhanced properties. There are different tissue engineering strategies, including cell-based, factor-based, and scaffold-based strategies. In scaffold-based tissue engineering, 3D scaffolds are one of the most important applications of 3D printers, especially in medical science. In this article, a review of 3D printers, suitable for the production of soft and hard tissue engineering with different technologies is performed and several 3D printing techniques are described. Moreover, the pros and cons, and limitations of the 3D printing technique are discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-021-01618-x</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-8878-5233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2022-03, Vol.142 (1-2), p.265-293
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2656974782
source Springer Nature
subjects 3-D printers
CAD
Civil Engineering
Classical and Continuum Physics
Computed tomography
Computer aided design
Dental materials
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Medical science
Scaffolds
Three dimensional printing
Tissue engineering
title Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%203D%20Bioprinters%20for%20Dental%20Pulp%20Regeneration%20and%20Tissue%20Engineering%20(Porous%20architecture)&rft.jtitle=Transport%20in%20porous%20media&rft.au=Iranmanesh,%20Pedram&rft.date=2022-03-01&rft.volume=142&rft.issue=1-2&rft.spage=265&rft.epage=293&rft.pages=265-293&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-021-01618-x&rft_dat=%3Cproquest_cross%3E2656974782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-baf2b282fa3d0e77aaac8d055d8543f4050c198f77660038b90c65ed0dcaba093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656974782&rft_id=info:pmid/&rfr_iscdi=true