Loading…
A deep learning approach based hardware solution to categorise garbage in environment
Garbage detection and disposal have become one of the major hassles in urban planning. Due to population influx in urban areas, the rate of garbage generation has increased exponentially along with garbage diversity. In this paper, we propose a hardware solution for garbage segregation at the base l...
Saved in:
Published in: | Complex & intelligent systems 2022-04, Vol.8 (2), p.1129-1152 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Garbage detection and disposal have become one of the major hassles in urban planning. Due to population influx in urban areas, the rate of garbage generation has increased exponentially along with garbage diversity. In this paper, we propose a hardware solution for garbage segregation at the base level based on deep learning architecture. The proposed deep-learning-based hardware solution
SmartBin
can segregate the garbage into biodegradable and non-biodegradable using Image classification through a Convolutional Neural Network System Architecture using a Real-time embedded system. Garbage detection via image classification aims for quick and efficient categorization of garbage present in the bin. However, this is an arduous task as garbage can be of any dimension, object, color, texture, unlike object detection of a particular entity where images of objects of that entity do share some similar characteristics and traits. The objective of this work is to compare the performance of various pre-trained Convolution Neural Network namely AlexNet, ResNet, VGG-16, and InceptionNet for garbage classification and test their working along with hardware components (PiCam, raspberry pi, infrared sensors, etc.) used for garbage detection in the bin. The InceptionNet Neural Network showed the best performance measure for the proposed model with an accuracy of 98.15% and a loss of 0.10 for the training set while it was 96.23% and 0.13 for the validation set. |
---|---|
ISSN: | 2199-4536 2198-6053 |
DOI: | 10.1007/s40747-021-00529-0 |