Loading…
Independent determination of Peltier coefficient in thermoelectric devices
Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE devi...
Saved in:
Published in: | Applied physics letters 2022-05, Vol.120 (18) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3 |
container_end_page | |
container_issue | 18 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Dhawan, Ruchika Panthi, Hari Prasad Lazaro, Orlando Blanco, Andres Edwards, Hal Lee, Mark |
description | Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy. |
doi_str_mv | 10.1063/5.0093575 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658362049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658362049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</originalsourceid><addsrcrecordid>eNqd0EtLAzEQAOAgCtbHwX-w4Elha5LZZLNHKT4qBT30HnazE0xpN2uSFvz3prbg3csMA9_MMEPIDaNTRiU8iCmlDYhanJAJo3VdAmPqlEwopVDKRrBzchHjKpeCA0zI23zoccQchlT0mDBs3NAm54fC2-ID18lhKIxHa51xe-SGIn1m5nGNJgVnctvOGYxX5My264jXx3xJls9Py9lruXh_mc8eF6UBXqeSqb5GayqUXCrskTNoOmlByqrquhYZcApAewu8kV2rJNKKcsvqThnVt3BJbg9jx-C_thiTXvltGPJGzaVQIDmtmqzuDsoEH2NAq8fgNm341ozq_ae00MdPZXt_sNG49Hv7__DOhz-ox3zBD2jTdzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658362049</pqid></control><display><type>article</type><title>Independent determination of Peltier coefficient in thermoelectric devices</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Dhawan, Ruchika ; Panthi, Hari Prasad ; Lazaro, Orlando ; Blanco, Andres ; Edwards, Hal ; Lee, Mark</creator><creatorcontrib>Dhawan, Ruchika ; Panthi, Hari Prasad ; Lazaro, Orlando ; Blanco, Andres ; Edwards, Hal ; Lee, Mark</creatorcontrib><description>Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0093575</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Biomedical materials ; Conduction heating ; Coolers ; Heat transmission ; High temperature effects ; Integrated circuits ; Internet of Things ; Material properties ; Ohmic dissipation ; Property values ; Resistance heating ; Short circuits ; Temperature ; Thermopiles</subject><ispartof>Applied physics letters, 2022-05, Vol.120 (18)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</citedby><cites>FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</cites><orcidid>0000-0001-6541-8465 ; 0000-0002-1101-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0093575$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Dhawan, Ruchika</creatorcontrib><creatorcontrib>Panthi, Hari Prasad</creatorcontrib><creatorcontrib>Lazaro, Orlando</creatorcontrib><creatorcontrib>Blanco, Andres</creatorcontrib><creatorcontrib>Edwards, Hal</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><title>Independent determination of Peltier coefficient in thermoelectric devices</title><title>Applied physics letters</title><description>Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.</description><subject>Applied physics</subject><subject>Biomedical materials</subject><subject>Conduction heating</subject><subject>Coolers</subject><subject>Heat transmission</subject><subject>High temperature effects</subject><subject>Integrated circuits</subject><subject>Internet of Things</subject><subject>Material properties</subject><subject>Ohmic dissipation</subject><subject>Property values</subject><subject>Resistance heating</subject><subject>Short circuits</subject><subject>Temperature</subject><subject>Thermopiles</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQAOAgCtbHwX-w4Elha5LZZLNHKT4qBT30HnazE0xpN2uSFvz3prbg3csMA9_MMEPIDaNTRiU8iCmlDYhanJAJo3VdAmPqlEwopVDKRrBzchHjKpeCA0zI23zoccQchlT0mDBs3NAm54fC2-ID18lhKIxHa51xe-SGIn1m5nGNJgVnctvOGYxX5My264jXx3xJls9Py9lruXh_mc8eF6UBXqeSqb5GayqUXCrskTNoOmlByqrquhYZcApAewu8kV2rJNKKcsvqThnVt3BJbg9jx-C_thiTXvltGPJGzaVQIDmtmqzuDsoEH2NAq8fgNm341ozq_ae00MdPZXt_sNG49Hv7__DOhz-ox3zBD2jTdzI</recordid><startdate>20220502</startdate><enddate>20220502</enddate><creator>Dhawan, Ruchika</creator><creator>Panthi, Hari Prasad</creator><creator>Lazaro, Orlando</creator><creator>Blanco, Andres</creator><creator>Edwards, Hal</creator><creator>Lee, Mark</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid><orcidid>https://orcid.org/0000-0002-1101-661X</orcidid></search><sort><creationdate>20220502</creationdate><title>Independent determination of Peltier coefficient in thermoelectric devices</title><author>Dhawan, Ruchika ; Panthi, Hari Prasad ; Lazaro, Orlando ; Blanco, Andres ; Edwards, Hal ; Lee, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Biomedical materials</topic><topic>Conduction heating</topic><topic>Coolers</topic><topic>Heat transmission</topic><topic>High temperature effects</topic><topic>Integrated circuits</topic><topic>Internet of Things</topic><topic>Material properties</topic><topic>Ohmic dissipation</topic><topic>Property values</topic><topic>Resistance heating</topic><topic>Short circuits</topic><topic>Temperature</topic><topic>Thermopiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhawan, Ruchika</creatorcontrib><creatorcontrib>Panthi, Hari Prasad</creatorcontrib><creatorcontrib>Lazaro, Orlando</creatorcontrib><creatorcontrib>Blanco, Andres</creatorcontrib><creatorcontrib>Edwards, Hal</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhawan, Ruchika</au><au>Panthi, Hari Prasad</au><au>Lazaro, Orlando</au><au>Blanco, Andres</au><au>Edwards, Hal</au><au>Lee, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent determination of Peltier coefficient in thermoelectric devices</atitle><jtitle>Applied physics letters</jtitle><date>2022-05-02</date><risdate>2022</risdate><volume>120</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093575</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid><orcidid>https://orcid.org/0000-0002-1101-661X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-05, Vol.120 (18) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2658362049 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Applied physics Biomedical materials Conduction heating Coolers Heat transmission High temperature effects Integrated circuits Internet of Things Material properties Ohmic dissipation Property values Resistance heating Short circuits Temperature Thermopiles |
title | Independent determination of Peltier coefficient in thermoelectric devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20determination%20of%20Peltier%20coefficient%20in%20thermoelectric%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Dhawan,%20Ruchika&rft.date=2022-05-02&rft.volume=120&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0093575&rft_dat=%3Cproquest_cross%3E2658362049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2658362049&rft_id=info:pmid/&rfr_iscdi=true |