Loading…

Independent determination of Peltier coefficient in thermoelectric devices

Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE devi...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2022-05, Vol.120 (18)
Main Authors: Dhawan, Ruchika, Panthi, Hari Prasad, Lazaro, Orlando, Blanco, Andres, Edwards, Hal, Lee, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3
cites cdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3
container_end_page
container_issue 18
container_start_page
container_title Applied physics letters
container_volume 120
creator Dhawan, Ruchika
Panthi, Hari Prasad
Lazaro, Orlando
Blanco, Andres
Edwards, Hal
Lee, Mark
description Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.
doi_str_mv 10.1063/5.0093575
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658362049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658362049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</originalsourceid><addsrcrecordid>eNqd0EtLAzEQAOAgCtbHwX-w4Elha5LZZLNHKT4qBT30HnazE0xpN2uSFvz3prbg3csMA9_MMEPIDaNTRiU8iCmlDYhanJAJo3VdAmPqlEwopVDKRrBzchHjKpeCA0zI23zoccQchlT0mDBs3NAm54fC2-ID18lhKIxHa51xe-SGIn1m5nGNJgVnctvOGYxX5My264jXx3xJls9Py9lruXh_mc8eF6UBXqeSqb5GayqUXCrskTNoOmlByqrquhYZcApAewu8kV2rJNKKcsvqThnVt3BJbg9jx-C_thiTXvltGPJGzaVQIDmtmqzuDsoEH2NAq8fgNm341ozq_ae00MdPZXt_sNG49Hv7__DOhz-ox3zBD2jTdzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658362049</pqid></control><display><type>article</type><title>Independent determination of Peltier coefficient in thermoelectric devices</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Dhawan, Ruchika ; Panthi, Hari Prasad ; Lazaro, Orlando ; Blanco, Andres ; Edwards, Hal ; Lee, Mark</creator><creatorcontrib>Dhawan, Ruchika ; Panthi, Hari Prasad ; Lazaro, Orlando ; Blanco, Andres ; Edwards, Hal ; Lee, Mark</creatorcontrib><description>Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0093575</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Biomedical materials ; Conduction heating ; Coolers ; Heat transmission ; High temperature effects ; Integrated circuits ; Internet of Things ; Material properties ; Ohmic dissipation ; Property values ; Resistance heating ; Short circuits ; Temperature ; Thermopiles</subject><ispartof>Applied physics letters, 2022-05, Vol.120 (18)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</citedby><cites>FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</cites><orcidid>0000-0001-6541-8465 ; 0000-0002-1101-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0093575$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Dhawan, Ruchika</creatorcontrib><creatorcontrib>Panthi, Hari Prasad</creatorcontrib><creatorcontrib>Lazaro, Orlando</creatorcontrib><creatorcontrib>Blanco, Andres</creatorcontrib><creatorcontrib>Edwards, Hal</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><title>Independent determination of Peltier coefficient in thermoelectric devices</title><title>Applied physics letters</title><description>Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.</description><subject>Applied physics</subject><subject>Biomedical materials</subject><subject>Conduction heating</subject><subject>Coolers</subject><subject>Heat transmission</subject><subject>High temperature effects</subject><subject>Integrated circuits</subject><subject>Internet of Things</subject><subject>Material properties</subject><subject>Ohmic dissipation</subject><subject>Property values</subject><subject>Resistance heating</subject><subject>Short circuits</subject><subject>Temperature</subject><subject>Thermopiles</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQAOAgCtbHwX-w4Elha5LZZLNHKT4qBT30HnazE0xpN2uSFvz3prbg3csMA9_MMEPIDaNTRiU8iCmlDYhanJAJo3VdAmPqlEwopVDKRrBzchHjKpeCA0zI23zoccQchlT0mDBs3NAm54fC2-ID18lhKIxHa51xe-SGIn1m5nGNJgVnctvOGYxX5My264jXx3xJls9Py9lruXh_mc8eF6UBXqeSqb5GayqUXCrskTNoOmlByqrquhYZcApAewu8kV2rJNKKcsvqThnVt3BJbg9jx-C_thiTXvltGPJGzaVQIDmtmqzuDsoEH2NAq8fgNm341ozq_ae00MdPZXt_sNG49Hv7__DOhz-ox3zBD2jTdzI</recordid><startdate>20220502</startdate><enddate>20220502</enddate><creator>Dhawan, Ruchika</creator><creator>Panthi, Hari Prasad</creator><creator>Lazaro, Orlando</creator><creator>Blanco, Andres</creator><creator>Edwards, Hal</creator><creator>Lee, Mark</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid><orcidid>https://orcid.org/0000-0002-1101-661X</orcidid></search><sort><creationdate>20220502</creationdate><title>Independent determination of Peltier coefficient in thermoelectric devices</title><author>Dhawan, Ruchika ; Panthi, Hari Prasad ; Lazaro, Orlando ; Blanco, Andres ; Edwards, Hal ; Lee, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Biomedical materials</topic><topic>Conduction heating</topic><topic>Coolers</topic><topic>Heat transmission</topic><topic>High temperature effects</topic><topic>Integrated circuits</topic><topic>Internet of Things</topic><topic>Material properties</topic><topic>Ohmic dissipation</topic><topic>Property values</topic><topic>Resistance heating</topic><topic>Short circuits</topic><topic>Temperature</topic><topic>Thermopiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhawan, Ruchika</creatorcontrib><creatorcontrib>Panthi, Hari Prasad</creatorcontrib><creatorcontrib>Lazaro, Orlando</creatorcontrib><creatorcontrib>Blanco, Andres</creatorcontrib><creatorcontrib>Edwards, Hal</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhawan, Ruchika</au><au>Panthi, Hari Prasad</au><au>Lazaro, Orlando</au><au>Blanco, Andres</au><au>Edwards, Hal</au><au>Lee, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent determination of Peltier coefficient in thermoelectric devices</atitle><jtitle>Applied physics letters</jtitle><date>2022-05-02</date><risdate>2022</risdate><volume>120</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower (α) and Peltier (Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π = αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi2Te3 TE generator. By measuring α and Π independently on the same device, the ratio (Π/α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093575</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid><orcidid>https://orcid.org/0000-0002-1101-661X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-05, Vol.120 (18)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2658362049
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Applied physics
Biomedical materials
Conduction heating
Coolers
Heat transmission
High temperature effects
Integrated circuits
Internet of Things
Material properties
Ohmic dissipation
Property values
Resistance heating
Short circuits
Temperature
Thermopiles
title Independent determination of Peltier coefficient in thermoelectric devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20determination%20of%20Peltier%20coefficient%20in%20thermoelectric%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Dhawan,%20Ruchika&rft.date=2022-05-02&rft.volume=120&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0093575&rft_dat=%3Cproquest_cross%3E2658362049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-18d7efc4e6268ede2139b6f36644bbae1320330df3296ba86e0402f17b8c8da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2658362049&rft_id=info:pmid/&rfr_iscdi=true