Loading…

Classification of clothing images based on a parallel convolutional neural network and random vector functional link optimized by the grasshopper optimization algorithm

To improve accuracy in clothing image recognition, this paper proposes a clothing classification method based on a parallel convolutional neural network (PCNN) combined with an optimized random vector functional link (RVFL). The method uses the PCNN model to extract features of clothing images. Then...

Full description

Saved in:
Bibliographic Details
Published in:Textile research journal 2022-05, Vol.92 (9-10), p.1415-1428
Main Authors: Zhou, Zhiyu, Deng, Wenxiong, Wang, Yaming, Zhu, Zefei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve accuracy in clothing image recognition, this paper proposes a clothing classification method based on a parallel convolutional neural network (PCNN) combined with an optimized random vector functional link (RVFL). The method uses the PCNN model to extract features of clothing images. Then, the structure-intensive and dual-channel convolutional neural network (i.e., the PCNN) is used to solve the problems of traditional convolutional neural networks (e.g., limited data and prone to overfitting). Each convolutional layer is followed by a batch normalization layer, and the leaky rectified linear unit activation function and max-pooling layers are used to improve the performance of the feature extraction. Then, dropout layers and fully connected layers are used to reduce the amount of calculation. The last layer uses the RVFL as optimized by the grasshopper optimization algorithm to replace the SoftMax layer and classify the features, further improving the stability and accuracy of classification. In this study, two aspects of the classification (feature extraction and feature classification) are improved, effectively improving the accuracy. The experimental results show that on the Fashion-Mnist dataset, the accuracy of the algorithm in this study reaches 92.93%. This value is 1.36%, 2.05%, 0.65%, and 3.76% higher than that of the local binary pattern (LBP)-support vector machine (SVM), histogram of oriented gradients (HOG)-SVM, LBP-HOG-SVM, and AlexNet-sparse representation-based classifier algorithms, respectively, effectively demonstrating the classification performance of the algorithm.
ISSN:0040-5175
1746-7748
DOI:10.1177/00405175211059207