Loading…

Multimodal Representation Learning With Text and Images

In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-04
Main Authors: Jayagopal, Aishwarya, Ankireddy, Monica Aiswarya, Garg, Ankita, Nandakumar, Srinivasan Kolumam
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jayagopal, Aishwarya
Ankireddy, Monica Aiswarya
Garg, Ankita
Nandakumar, Srinivasan Kolumam
description In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2658985618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658985618</sourcerecordid><originalsourceid>FETCH-proquest_journals_26589856183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9y3NKcnMzU9JzFEISi0oSi1OzStJLMnMz1PwSU0sysvMS1cIzyzJUAhJrShRSMxLUfDMTUxPLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjM1MLSwtTM0MLY-JUAQAbJzXV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658985618</pqid></control><display><type>article</type><title>Multimodal Representation Learning With Text and Images</title><source>Publicly Available Content Database</source><creator>Jayagopal, Aishwarya ; Ankireddy, Monica Aiswarya ; Garg, Ankita ; Nandakumar, Srinivasan Kolumam</creator><creatorcontrib>Jayagopal, Aishwarya ; Ankireddy, Monica Aiswarya ; Garg, Ankita ; Nandakumar, Srinivasan Kolumam</creatorcontrib><description>In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Computer vision ; Learning ; Natural language processing ; Representations</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2658985618?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Jayagopal, Aishwarya</creatorcontrib><creatorcontrib>Ankireddy, Monica Aiswarya</creatorcontrib><creatorcontrib>Garg, Ankita</creatorcontrib><creatorcontrib>Nandakumar, Srinivasan Kolumam</creatorcontrib><title>Multimodal Representation Learning With Text and Images</title><title>arXiv.org</title><description>In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.</description><subject>Coders</subject><subject>Computer vision</subject><subject>Learning</subject><subject>Natural language processing</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9y3NKcnMzU9JzFEISi0oSi1OzStJLMnMz1PwSU0sysvMS1cIzyzJUAhJrShRSMxLUfDMTUxPLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjM1MLSwtTM0MLY-JUAQAbJzXV</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Jayagopal, Aishwarya</creator><creator>Ankireddy, Monica Aiswarya</creator><creator>Garg, Ankita</creator><creator>Nandakumar, Srinivasan Kolumam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220430</creationdate><title>Multimodal Representation Learning With Text and Images</title><author>Jayagopal, Aishwarya ; Ankireddy, Monica Aiswarya ; Garg, Ankita ; Nandakumar, Srinivasan Kolumam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26589856183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Computer vision</topic><topic>Learning</topic><topic>Natural language processing</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Jayagopal, Aishwarya</creatorcontrib><creatorcontrib>Ankireddy, Monica Aiswarya</creatorcontrib><creatorcontrib>Garg, Ankita</creatorcontrib><creatorcontrib>Nandakumar, Srinivasan Kolumam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayagopal, Aishwarya</au><au>Ankireddy, Monica Aiswarya</au><au>Garg, Ankita</au><au>Nandakumar, Srinivasan Kolumam</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multimodal Representation Learning With Text and Images</atitle><jtitle>arXiv.org</jtitle><date>2022-04-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2658985618
source Publicly Available Content Database
subjects Coders
Computer vision
Learning
Natural language processing
Representations
title Multimodal Representation Learning With Text and Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multimodal%20Representation%20Learning%20With%20Text%20and%20Images&rft.jtitle=arXiv.org&rft.au=Jayagopal,%20Aishwarya&rft.date=2022-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2658985618%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26589856183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2658985618&rft_id=info:pmid/&rfr_iscdi=true