Loading…
Multimodal Representation Learning With Text and Images
In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image...
Saved in:
Published in: | arXiv.org 2022-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jayagopal, Aishwarya Ankireddy, Monica Aiswarya Garg, Ankita Nandakumar, Srinivasan Kolumam |
description | In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2658985618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658985618</sourcerecordid><originalsourceid>FETCH-proquest_journals_26589856183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9y3NKcnMzU9JzFEISi0oSi1OzStJLMnMz1PwSU0sysvMS1cIzyzJUAhJrShRSMxLUfDMTUxPLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjM1MLSwtTM0MLY-JUAQAbJzXV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658985618</pqid></control><display><type>article</type><title>Multimodal Representation Learning With Text and Images</title><source>Publicly Available Content Database</source><creator>Jayagopal, Aishwarya ; Ankireddy, Monica Aiswarya ; Garg, Ankita ; Nandakumar, Srinivasan Kolumam</creator><creatorcontrib>Jayagopal, Aishwarya ; Ankireddy, Monica Aiswarya ; Garg, Ankita ; Nandakumar, Srinivasan Kolumam</creatorcontrib><description>In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Computer vision ; Learning ; Natural language processing ; Representations</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2658985618?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Jayagopal, Aishwarya</creatorcontrib><creatorcontrib>Ankireddy, Monica Aiswarya</creatorcontrib><creatorcontrib>Garg, Ankita</creatorcontrib><creatorcontrib>Nandakumar, Srinivasan Kolumam</creatorcontrib><title>Multimodal Representation Learning With Text and Images</title><title>arXiv.org</title><description>In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.</description><subject>Coders</subject><subject>Computer vision</subject><subject>Learning</subject><subject>Natural language processing</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9y3NKcnMzU9JzFEISi0oSi1OzStJLMnMz1PwSU0sysvMS1cIzyzJUAhJrShRSMxLUfDMTUxPLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjM1MLSwtTM0MLY-JUAQAbJzXV</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Jayagopal, Aishwarya</creator><creator>Ankireddy, Monica Aiswarya</creator><creator>Garg, Ankita</creator><creator>Nandakumar, Srinivasan Kolumam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220430</creationdate><title>Multimodal Representation Learning With Text and Images</title><author>Jayagopal, Aishwarya ; Ankireddy, Monica Aiswarya ; Garg, Ankita ; Nandakumar, Srinivasan Kolumam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26589856183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Computer vision</topic><topic>Learning</topic><topic>Natural language processing</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Jayagopal, Aishwarya</creatorcontrib><creatorcontrib>Ankireddy, Monica Aiswarya</creatorcontrib><creatorcontrib>Garg, Ankita</creatorcontrib><creatorcontrib>Nandakumar, Srinivasan Kolumam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayagopal, Aishwarya</au><au>Ankireddy, Monica Aiswarya</au><au>Garg, Ankita</au><au>Nandakumar, Srinivasan Kolumam</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multimodal Representation Learning With Text and Images</atitle><jtitle>arXiv.org</jtitle><date>2022-04-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In recent years, multimodal AI has seen an upward trend as researchers are integrating data of different types such as text, images, speech into modelling to get the best results. This project leverages multimodal AI and matrix factorization techniques for representation learning, on text and image data simultaneously, thereby employing the widely used techniques of Natural Language Processing (NLP) and Computer Vision. The learnt representations are evaluated using downstream classification and regression tasks. The methodology adopted can be extended beyond the scope of this project as it uses Auto-Encoders for unsupervised representation learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2658985618 |
source | Publicly Available Content Database |
subjects | Coders Computer vision Learning Natural language processing Representations |
title | Multimodal Representation Learning With Text and Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multimodal%20Representation%20Learning%20With%20Text%20and%20Images&rft.jtitle=arXiv.org&rft.au=Jayagopal,%20Aishwarya&rft.date=2022-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2658985618%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26589856183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2658985618&rft_id=info:pmid/&rfr_iscdi=true |