Loading…
Persistent Laplacian projected Omicron BA.4 and BA.5 to become new dominating variants
Due to its high transmissibility, Omicron BA.1 ousted the Delta variant to become a dominating variant in late 2021 and was replaced by more transmissible Omicron BA.2 in March 2022. An important question is which new variants will dominate in the future. Topology-based deep learning models have had...
Saved in:
Published in: | arXiv.org 2022-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to its high transmissibility, Omicron BA.1 ousted the Delta variant to become a dominating variant in late 2021 and was replaced by more transmissible Omicron BA.2 in March 2022. An important question is which new variants will dominate in the future. Topology-based deep learning models have had tremendous success in forecasting emerging variants in the past. However, topology is insensitive to homotopic shape variations in virus-human protein-protein binding, which are crucial to viral evolution and transmission. This challenge is tackled with persistent Laplacian, which is able to capture both the topology and shape of data. Persistent Laplacian-based deep learning models are developed to systematically evaluate variant infectivity. Our comparative analysis of Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron BA.1, BA.1.1, BA.2, BA.2.11, BA.2.12.1, BA.3, BA.4, and BA.5 unveils that Omicron BA.2.11, BA.2.12.1, BA.3, BA.4, and BA.5 are more contagious than BA.2. In particular, BA.4 and BA.5 are about 36\% more infectious than BA.2 and are projected to become new dominating variants by natural selection. Moreover, the proposed models outperform the state-of-the-art methods on three major benchmark datasets for mutation-induced protein-protein binding free energy changes. |
---|---|
ISSN: | 2331-8422 |