Loading…

Distinct contributions of drought avoidance and drought tolerance to yield improvement in dryland wheat cropping

Crop avoidance and tolerance strategies are critical adaptive mechanisms of drought stress and play different roles in grain yield. However, little is known about the contribution of these two mechanisms to grain yield in old and modern wheat genotypes. Here, pot and field experiments were carried o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agronomy and crop science (1986) 2022-06, Vol.208 (3), p.265-282
Main Authors: Li, Pu‐Fang, Ma, Bao‐Luo, Palta, Jairo A., Ding, Tong‐Tong, Cheng, Zheng‐Guo, Xiong, You‐Cai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crop avoidance and tolerance strategies are critical adaptive mechanisms of drought stress and play different roles in grain yield. However, little is known about the contribution of these two mechanisms to grain yield in old and modern wheat genotypes. Here, pot and field experiments were carried out to characterize and compare the mechanisms of drought avoidance and drought tolerance, and determine their differential contributions to the yield in six wheat genotypes. The pot experiment results demonstrated that the old genotypes acquired a better avoidance ability to adapt to drought stress. These avoidance abilities include larger root systems, lower leaf areas, low stomatal conductance, pale green leaf colour, higher degrees of leaf rolling and leaf waxiness. The modern genotypes displayed stronger drought tolerance advantages, such as high osmotic adjustment and antioxidant enzyme activity, and a smaller root system. Our field experiment further showed that under severe water‐deficit conditions, the old genotypes with stronger drought avoidance traits had higher yields and water use efficiency (WUEg), whereas the modern genotypes with strong drought tolerance characteristics produced higher yields and had higher WUEg under mild and intermediate water deficits. The results indicate that the relative contribution of drought tolerance and drought avoidance to grain yield depends to a large extent on the degree of drought stress and genotypes. Understanding the differential plant response depending on genotype and drought stress may help plant breeders develop drought‐resistant varieties suitable for drought‐prone environments under anticipated climate change scenarios.
ISSN:0931-2250
1439-037X
DOI:10.1111/jac.12574