Loading…

SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving

Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2022-05, Vol.23 (5), p.4099-4110
Main Authors: Tian, Daxin, Lin, Chunmian, Zhou, Jianshan, Duan, Xuting, Cao, Yue, Zhao, Dezong, Cao, Dongpu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23
cites cdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23
container_end_page 4110
container_issue 5
container_start_page 4099
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Tian, Daxin
Lin, Chunmian
Zhou, Jianshan
Duan, Xuting
Cao, Yue
Zhao, Dezong
Cao, Dongpu
description Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of 512\times 512 , our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future.
doi_str_mv 10.1109/TITS.2020.3041278
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659346951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9298480</ieee_id><sourcerecordid>2659346951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6az-3G29JWLVT20PbgKaTpRLO0uzXJFvz3plQ8vcPwvDPwZNk9wSNCsHxazVfLEcUUjxjmhI7Li2xAhChzjElxeZopzyUW-Dq7CaFJWy4IGWTNsso_6kV9ZM-oatHMWmcctBHpdosqY3qvI6B604CJaAoxRefROrj2Ey1hZ_MqxoS7rkXvYL5068Ie2YRUfezabt_1AU29Oyb-Nruyehfg7i-H2fpltpq85Yv6dT6pFrlhrIi5lmMOZgN0U2KusSQGuAQBWyuopIRpOqa4tNQSbkHQwnLOSiatNkZyrikbZo_nuwffffcQomq63rfppaKFkIwXUpBEkTNlfBeCB6sO3u21_1EEq5NSdVKqTkrVn9LUeTh3HAD885LKkpeY_QJ0iHGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659346951</pqid></control><display><type>article</type><title>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</title><source>IEEE Xplore (Online service)</source><creator>Tian, Daxin ; Lin, Chunmian ; Zhou, Jianshan ; Duan, Xuting ; Cao, Yue ; Zhao, Dezong ; Cao, Dongpu</creator><creatorcontrib>Tian, Daxin ; Lin, Chunmian ; Zhou, Jianshan ; Duan, Xuting ; Cao, Yue ; Zhao, Dezong ; Cao, Dongpu</creatorcontrib><description>Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;512\times 512 &lt;/tex-math&gt;&lt;/inline-formula&gt;, our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3041278</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>attention mechanism ; Autonomous driving ; Autonomous vehicles ; Computer architecture ; Convolution ; deep learning ; Detectors ; Feature extraction ; Inference ; intelligent transportation systems ; Object detection ; Object recognition ; Visualization ; YOLOv3</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-05, Vol.23 (5), p.4099-4110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</citedby><cites>FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</cites><orcidid>0000-0001-5331-6162 ; 0000-0002-9848-372X ; 0000-0001-7796-5650 ; 0000-0002-2098-7637 ; 0000-0001-5931-8310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9298480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Lin, Chunmian</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Duan, Xuting</creatorcontrib><creatorcontrib>Cao, Yue</creatorcontrib><creatorcontrib>Zhao, Dezong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><title>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;512\times 512 &lt;/tex-math&gt;&lt;/inline-formula&gt;, our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future.</description><subject>attention mechanism</subject><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Inference</subject><subject>intelligent transportation systems</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Visualization</subject><subject>YOLOv3</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6az-3G29JWLVT20PbgKaTpRLO0uzXJFvz3plQ8vcPwvDPwZNk9wSNCsHxazVfLEcUUjxjmhI7Li2xAhChzjElxeZopzyUW-Dq7CaFJWy4IGWTNsso_6kV9ZM-oatHMWmcctBHpdosqY3qvI6B604CJaAoxRefROrj2Ey1hZ_MqxoS7rkXvYL5068Ie2YRUfezabt_1AU29Oyb-Nruyehfg7i-H2fpltpq85Yv6dT6pFrlhrIi5lmMOZgN0U2KusSQGuAQBWyuopIRpOqa4tNQSbkHQwnLOSiatNkZyrikbZo_nuwffffcQomq63rfppaKFkIwXUpBEkTNlfBeCB6sO3u21_1EEq5NSdVKqTkrVn9LUeTh3HAD885LKkpeY_QJ0iHGo</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Tian, Daxin</creator><creator>Lin, Chunmian</creator><creator>Zhou, Jianshan</creator><creator>Duan, Xuting</creator><creator>Cao, Yue</creator><creator>Zhao, Dezong</creator><creator>Cao, Dongpu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5331-6162</orcidid><orcidid>https://orcid.org/0000-0002-9848-372X</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid><orcidid>https://orcid.org/0000-0002-2098-7637</orcidid><orcidid>https://orcid.org/0000-0001-5931-8310</orcidid></search><sort><creationdate>20220501</creationdate><title>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</title><author>Tian, Daxin ; Lin, Chunmian ; Zhou, Jianshan ; Duan, Xuting ; Cao, Yue ; Zhao, Dezong ; Cao, Dongpu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention mechanism</topic><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Inference</topic><topic>intelligent transportation systems</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Visualization</topic><topic>YOLOv3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Lin, Chunmian</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Duan, Xuting</creatorcontrib><creatorcontrib>Cao, Yue</creatorcontrib><creatorcontrib>Zhao, Dezong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Daxin</au><au>Lin, Chunmian</au><au>Zhou, Jianshan</au><au>Duan, Xuting</au><au>Cao, Yue</au><au>Zhao, Dezong</au><au>Cao, Dongpu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>23</volume><issue>5</issue><spage>4099</spage><epage>4110</epage><pages>4099-4110</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;512\times 512 &lt;/tex-math&gt;&lt;/inline-formula&gt;, our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3041278</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5331-6162</orcidid><orcidid>https://orcid.org/0000-0002-9848-372X</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid><orcidid>https://orcid.org/0000-0002-2098-7637</orcidid><orcidid>https://orcid.org/0000-0001-5931-8310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-05, Vol.23 (5), p.4099-4110
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2659346951
source IEEE Xplore (Online service)
subjects attention mechanism
Autonomous driving
Autonomous vehicles
Computer architecture
Convolution
deep learning
Detectors
Feature extraction
Inference
intelligent transportation systems
Object detection
Object recognition
Visualization
YOLOv3
title SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SA-YOLOv3:%20An%20Efficient%20and%20Accurate%20Object%20Detector%20Using%20Self-Attention%20Mechanism%20for%20Autonomous%20Driving&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Tian,%20Daxin&rft.date=2022-05-01&rft.volume=23&rft.issue=5&rft.spage=4099&rft.epage=4110&rft.pages=4099-4110&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3041278&rft_dat=%3Cproquest_cross%3E2659346951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659346951&rft_id=info:pmid/&rft_ieee_id=9298480&rfr_iscdi=true