Loading…
SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving
Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducin...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2022-05, Vol.23 (5), p.4099-4110 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23 |
container_end_page | 4110 |
container_issue | 5 |
container_start_page | 4099 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Tian, Daxin Lin, Chunmian Zhou, Jianshan Duan, Xuting Cao, Yue Zhao, Dezong Cao, Dongpu |
description | Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of 512\times 512 , our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future. |
doi_str_mv | 10.1109/TITS.2020.3041278 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659346951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9298480</ieee_id><sourcerecordid>2659346951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6az-3G29JWLVT20PbgKaTpRLO0uzXJFvz3plQ8vcPwvDPwZNk9wSNCsHxazVfLEcUUjxjmhI7Li2xAhChzjElxeZopzyUW-Dq7CaFJWy4IGWTNsso_6kV9ZM-oatHMWmcctBHpdosqY3qvI6B604CJaAoxRefROrj2Ey1hZ_MqxoS7rkXvYL5068Ie2YRUfezabt_1AU29Oyb-Nruyehfg7i-H2fpltpq85Yv6dT6pFrlhrIi5lmMOZgN0U2KusSQGuAQBWyuopIRpOqa4tNQSbkHQwnLOSiatNkZyrikbZo_nuwffffcQomq63rfppaKFkIwXUpBEkTNlfBeCB6sO3u21_1EEq5NSdVKqTkrVn9LUeTh3HAD885LKkpeY_QJ0iHGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659346951</pqid></control><display><type>article</type><title>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</title><source>IEEE Xplore (Online service)</source><creator>Tian, Daxin ; Lin, Chunmian ; Zhou, Jianshan ; Duan, Xuting ; Cao, Yue ; Zhao, Dezong ; Cao, Dongpu</creator><creatorcontrib>Tian, Daxin ; Lin, Chunmian ; Zhou, Jianshan ; Duan, Xuting ; Cao, Yue ; Zhao, Dezong ; Cao, Dongpu</creatorcontrib><description>Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of <inline-formula> <tex-math notation="LaTeX">512\times 512 </tex-math></inline-formula>, our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3041278</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>attention mechanism ; Autonomous driving ; Autonomous vehicles ; Computer architecture ; Convolution ; deep learning ; Detectors ; Feature extraction ; Inference ; intelligent transportation systems ; Object detection ; Object recognition ; Visualization ; YOLOv3</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-05, Vol.23 (5), p.4099-4110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</citedby><cites>FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</cites><orcidid>0000-0001-5331-6162 ; 0000-0002-9848-372X ; 0000-0001-7796-5650 ; 0000-0002-2098-7637 ; 0000-0001-5931-8310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9298480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Lin, Chunmian</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Duan, Xuting</creatorcontrib><creatorcontrib>Cao, Yue</creatorcontrib><creatorcontrib>Zhao, Dezong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><title>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of <inline-formula> <tex-math notation="LaTeX">512\times 512 </tex-math></inline-formula>, our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future.</description><subject>attention mechanism</subject><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Inference</subject><subject>intelligent transportation systems</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Visualization</subject><subject>YOLOv3</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6az-3G29JWLVT20PbgKaTpRLO0uzXJFvz3plQ8vcPwvDPwZNk9wSNCsHxazVfLEcUUjxjmhI7Li2xAhChzjElxeZopzyUW-Dq7CaFJWy4IGWTNsso_6kV9ZM-oatHMWmcctBHpdosqY3qvI6B604CJaAoxRefROrj2Ey1hZ_MqxoS7rkXvYL5068Ie2YRUfezabt_1AU29Oyb-Nruyehfg7i-H2fpltpq85Yv6dT6pFrlhrIi5lmMOZgN0U2KusSQGuAQBWyuopIRpOqa4tNQSbkHQwnLOSiatNkZyrikbZo_nuwffffcQomq63rfppaKFkIwXUpBEkTNlfBeCB6sO3u21_1EEq5NSdVKqTkrVn9LUeTh3HAD885LKkpeY_QJ0iHGo</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Tian, Daxin</creator><creator>Lin, Chunmian</creator><creator>Zhou, Jianshan</creator><creator>Duan, Xuting</creator><creator>Cao, Yue</creator><creator>Zhao, Dezong</creator><creator>Cao, Dongpu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5331-6162</orcidid><orcidid>https://orcid.org/0000-0002-9848-372X</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid><orcidid>https://orcid.org/0000-0002-2098-7637</orcidid><orcidid>https://orcid.org/0000-0001-5931-8310</orcidid></search><sort><creationdate>20220501</creationdate><title>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</title><author>Tian, Daxin ; Lin, Chunmian ; Zhou, Jianshan ; Duan, Xuting ; Cao, Yue ; Zhao, Dezong ; Cao, Dongpu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention mechanism</topic><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Inference</topic><topic>intelligent transportation systems</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Visualization</topic><topic>YOLOv3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Lin, Chunmian</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Duan, Xuting</creatorcontrib><creatorcontrib>Cao, Yue</creatorcontrib><creatorcontrib>Zhao, Dezong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Daxin</au><au>Lin, Chunmian</au><au>Zhou, Jianshan</au><au>Duan, Xuting</au><au>Cao, Yue</au><au>Zhao, Dezong</au><au>Cao, Dongpu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>23</volume><issue>5</issue><spage>4099</spage><epage>4110</epage><pages>4099-4110</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Object detection is becoming increasingly significant for autonomous-driving system. However, poor accuracy or low inference performance limits current object detectors in applying to autonomous driving. In this work, a fast and accurate object detector termed as SA-YOLOv3, is proposed by introducing dilated convolution and self-attention module (SAM) into the architecture of YOLOv3. Furthermore, loss function based on GIoU and focal loss is reconstructed to further optimize detection performance. With an input size of <inline-formula> <tex-math notation="LaTeX">512\times 512 </tex-math></inline-formula>, our proposed SA-YOLOv3 improves YOLOv3 by 2.58 mAP and 2.63 mAP on KITTI and BDD100K benchmarks, with real-time inference (more than 40 FPS). When compared with other state-of-the-art detectors, it reports better trade-off in terms of detection accuracy and speed, indicating the suitability for autonomous-driving application. To our best knowledge, it is the first method that incorporates YOLOv3 with attention mechanism, and we expect this work would guide for autonomous-driving research in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3041278</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5331-6162</orcidid><orcidid>https://orcid.org/0000-0002-9848-372X</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid><orcidid>https://orcid.org/0000-0002-2098-7637</orcidid><orcidid>https://orcid.org/0000-0001-5931-8310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-05, Vol.23 (5), p.4099-4110 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2659346951 |
source | IEEE Xplore (Online service) |
subjects | attention mechanism Autonomous driving Autonomous vehicles Computer architecture Convolution deep learning Detectors Feature extraction Inference intelligent transportation systems Object detection Object recognition Visualization YOLOv3 |
title | SA-YOLOv3: An Efficient and Accurate Object Detector Using Self-Attention Mechanism for Autonomous Driving |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SA-YOLOv3:%20An%20Efficient%20and%20Accurate%20Object%20Detector%20Using%20Self-Attention%20Mechanism%20for%20Autonomous%20Driving&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Tian,%20Daxin&rft.date=2022-05-01&rft.volume=23&rft.issue=5&rft.spage=4099&rft.epage=4110&rft.pages=4099-4110&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3041278&rft_dat=%3Cproquest_cross%3E2659346951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-a974ecbe2b804a091ce49e5edf529213a27208f2f14fe526f443839facc944a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659346951&rft_id=info:pmid/&rft_ieee_id=9298480&rfr_iscdi=true |