Loading…

A numerical model for tool–chip friction in intermittent orthogonal machining

This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micromanufacturing (Online) 2022-05, Vol.5 (1), p.36-45
Main Authors: Saini, Akash, Jayal, Anshu Dhar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23
cites cdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23
container_end_page 45
container_issue 1
container_start_page 36
container_title Journal of micromanufacturing (Online)
container_volume 5
creator Saini, Akash
Jayal, Anshu Dhar
description This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.
doi_str_mv 10.1177/25165984211048121
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659557539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659557539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</originalsourceid><addsrcrecordid>eNplkM1KAzEQgIMoWGofwFvA82om2ZjkWIp_UOhFz0vIT5uyu1mT7MGb7-Ab-iTuUvEiDMww880wfAhdA7kFEOKOcrjnStYUgNQSKJyhxdyruFL0_K-W9SVa5XwkhDAGrCZqgXZr3I-dS8HoFnfRuhb7mHCJsf3-_DKHMGA_DUuIPQ5zFJe6UIrrC46pHOI-9vOmntA-9PsrdOF1m93qNy_R2-PD6-a52u6eXjbrbWUoFaUCpkFpU1NNPWimpWLUam-EkJJJYomzVgAwApYZqKUg1lBjuWaeeGMoW6Kb090hxffR5dIc45imV3JDJxecC87URMGJMinmnJxvhhQ6nT4aIM2srvmnjv0AvB5h0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659557539</pqid></control><display><type>article</type><title>A numerical model for tool–chip friction in intermittent orthogonal machining</title><source>Sage Journals Online</source><creator>Saini, Akash ; Jayal, Anshu Dhar</creator><creatorcontrib>Saini, Akash ; Jayal, Anshu Dhar</creatorcontrib><description>This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.</description><identifier>ISSN: 2516-5984</identifier><identifier>EISSN: 2516-5992</identifier><identifier>DOI: 10.1177/25165984211048121</identifier><language>eng</language><publisher>New Delhi: Sage Publications Ltd</publisher><subject>Coefficient of friction ; Cutting tools ; Friction ; Machining ; Materials engineering ; Micromachining ; Numerical models ; Surface layers ; Surface roughness</subject><ispartof>Journal of micromanufacturing (Online), 2022-05, Vol.5 (1), p.36-45</ispartof><rights>2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</citedby><cites>FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</cites><orcidid>0000-0002-6775-8153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Saini, Akash</creatorcontrib><creatorcontrib>Jayal, Anshu Dhar</creatorcontrib><title>A numerical model for tool–chip friction in intermittent orthogonal machining</title><title>Journal of micromanufacturing (Online)</title><description>This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.</description><subject>Coefficient of friction</subject><subject>Cutting tools</subject><subject>Friction</subject><subject>Machining</subject><subject>Materials engineering</subject><subject>Micromachining</subject><subject>Numerical models</subject><subject>Surface layers</subject><subject>Surface roughness</subject><issn>2516-5984</issn><issn>2516-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkM1KAzEQgIMoWGofwFvA82om2ZjkWIp_UOhFz0vIT5uyu1mT7MGb7-Ab-iTuUvEiDMww880wfAhdA7kFEOKOcrjnStYUgNQSKJyhxdyruFL0_K-W9SVa5XwkhDAGrCZqgXZr3I-dS8HoFnfRuhb7mHCJsf3-_DKHMGA_DUuIPQ5zFJe6UIrrC46pHOI-9vOmntA-9PsrdOF1m93qNy_R2-PD6-a52u6eXjbrbWUoFaUCpkFpU1NNPWimpWLUam-EkJJJYomzVgAwApYZqKUg1lBjuWaeeGMoW6Kb090hxffR5dIc45imV3JDJxecC87URMGJMinmnJxvhhQ6nT4aIM2srvmnjv0AvB5h0Q</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Saini, Akash</creator><creator>Jayal, Anshu Dhar</creator><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6775-8153</orcidid></search><sort><creationdate>202205</creationdate><title>A numerical model for tool–chip friction in intermittent orthogonal machining</title><author>Saini, Akash ; Jayal, Anshu Dhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coefficient of friction</topic><topic>Cutting tools</topic><topic>Friction</topic><topic>Machining</topic><topic>Materials engineering</topic><topic>Micromachining</topic><topic>Numerical models</topic><topic>Surface layers</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saini, Akash</creatorcontrib><creatorcontrib>Jayal, Anshu Dhar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of micromanufacturing (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saini, Akash</au><au>Jayal, Anshu Dhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical model for tool–chip friction in intermittent orthogonal machining</atitle><jtitle>Journal of micromanufacturing (Online)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>36</spage><epage>45</epage><pages>36-45</pages><issn>2516-5984</issn><eissn>2516-5992</eissn><abstract>This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.</abstract><cop>New Delhi</cop><pub>Sage Publications Ltd</pub><doi>10.1177/25165984211048121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6775-8153</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2516-5984
ispartof Journal of micromanufacturing (Online), 2022-05, Vol.5 (1), p.36-45
issn 2516-5984
2516-5992
language eng
recordid cdi_proquest_journals_2659557539
source Sage Journals Online
subjects Coefficient of friction
Cutting tools
Friction
Machining
Materials engineering
Micromachining
Numerical models
Surface layers
Surface roughness
title A numerical model for tool–chip friction in intermittent orthogonal machining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20model%20for%20tool%E2%80%93chip%20friction%20in%20intermittent%20orthogonal%20machining&rft.jtitle=Journal%20of%20micromanufacturing%20(Online)&rft.au=Saini,%20Akash&rft.date=2022-05&rft.volume=5&rft.issue=1&rft.spage=36&rft.epage=45&rft.pages=36-45&rft.issn=2516-5984&rft.eissn=2516-5992&rft_id=info:doi/10.1177/25165984211048121&rft_dat=%3Cproquest_cross%3E2659557539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659557539&rft_id=info:pmid/&rfr_iscdi=true