Loading…
A numerical model for tool–chip friction in intermittent orthogonal machining
This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann...
Saved in:
Published in: | Journal of micromanufacturing (Online) 2022-05, Vol.5 (1), p.36-45 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23 |
container_end_page | 45 |
container_issue | 1 |
container_start_page | 36 |
container_title | Journal of micromanufacturing (Online) |
container_volume | 5 |
creator | Saini, Akash Jayal, Anshu Dhar |
description | This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime. |
doi_str_mv | 10.1177/25165984211048121 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659557539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659557539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</originalsourceid><addsrcrecordid>eNplkM1KAzEQgIMoWGofwFvA82om2ZjkWIp_UOhFz0vIT5uyu1mT7MGb7-Ab-iTuUvEiDMww880wfAhdA7kFEOKOcrjnStYUgNQSKJyhxdyruFL0_K-W9SVa5XwkhDAGrCZqgXZr3I-dS8HoFnfRuhb7mHCJsf3-_DKHMGA_DUuIPQ5zFJe6UIrrC46pHOI-9vOmntA-9PsrdOF1m93qNy_R2-PD6-a52u6eXjbrbWUoFaUCpkFpU1NNPWimpWLUam-EkJJJYomzVgAwApYZqKUg1lBjuWaeeGMoW6Kb090hxffR5dIc45imV3JDJxecC87URMGJMinmnJxvhhQ6nT4aIM2srvmnjv0AvB5h0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659557539</pqid></control><display><type>article</type><title>A numerical model for tool–chip friction in intermittent orthogonal machining</title><source>Sage Journals Online</source><creator>Saini, Akash ; Jayal, Anshu Dhar</creator><creatorcontrib>Saini, Akash ; Jayal, Anshu Dhar</creatorcontrib><description>This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.</description><identifier>ISSN: 2516-5984</identifier><identifier>EISSN: 2516-5992</identifier><identifier>DOI: 10.1177/25165984211048121</identifier><language>eng</language><publisher>New Delhi: Sage Publications Ltd</publisher><subject>Coefficient of friction ; Cutting tools ; Friction ; Machining ; Materials engineering ; Micromachining ; Numerical models ; Surface layers ; Surface roughness</subject><ispartof>Journal of micromanufacturing (Online), 2022-05, Vol.5 (1), p.36-45</ispartof><rights>2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</citedby><cites>FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</cites><orcidid>0000-0002-6775-8153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Saini, Akash</creatorcontrib><creatorcontrib>Jayal, Anshu Dhar</creatorcontrib><title>A numerical model for tool–chip friction in intermittent orthogonal machining</title><title>Journal of micromanufacturing (Online)</title><description>This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.</description><subject>Coefficient of friction</subject><subject>Cutting tools</subject><subject>Friction</subject><subject>Machining</subject><subject>Materials engineering</subject><subject>Micromachining</subject><subject>Numerical models</subject><subject>Surface layers</subject><subject>Surface roughness</subject><issn>2516-5984</issn><issn>2516-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkM1KAzEQgIMoWGofwFvA82om2ZjkWIp_UOhFz0vIT5uyu1mT7MGb7-Ab-iTuUvEiDMww880wfAhdA7kFEOKOcrjnStYUgNQSKJyhxdyruFL0_K-W9SVa5XwkhDAGrCZqgXZr3I-dS8HoFnfRuhb7mHCJsf3-_DKHMGA_DUuIPQ5zFJe6UIrrC46pHOI-9vOmntA-9PsrdOF1m93qNy_R2-PD6-a52u6eXjbrbWUoFaUCpkFpU1NNPWimpWLUam-EkJJJYomzVgAwApYZqKUg1lBjuWaeeGMoW6Kb090hxffR5dIc45imV3JDJxecC87URMGJMinmnJxvhhQ6nT4aIM2srvmnjv0AvB5h0Q</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Saini, Akash</creator><creator>Jayal, Anshu Dhar</creator><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6775-8153</orcidid></search><sort><creationdate>202205</creationdate><title>A numerical model for tool–chip friction in intermittent orthogonal machining</title><author>Saini, Akash ; Jayal, Anshu Dhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coefficient of friction</topic><topic>Cutting tools</topic><topic>Friction</topic><topic>Machining</topic><topic>Materials engineering</topic><topic>Micromachining</topic><topic>Numerical models</topic><topic>Surface layers</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saini, Akash</creatorcontrib><creatorcontrib>Jayal, Anshu Dhar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of micromanufacturing (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saini, Akash</au><au>Jayal, Anshu Dhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical model for tool–chip friction in intermittent orthogonal machining</atitle><jtitle>Journal of micromanufacturing (Online)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>36</spage><epage>45</epage><pages>36-45</pages><issn>2516-5984</issn><eissn>2516-5992</eissn><abstract>This article presents a novel model to study the influence of surface textured cutting tools in near-micromachining conditions. The model utilizes the Challen and Oxley’s asperity deformation model (Van Luttervelt et al., CIRP Ann Manuf Technol, 1998, vol. 47, pp. 587–626; Arrazola et al., CIRP Ann Manuf Technol, 2013, vol. 62, pp. 695–718) paired with an approach to a priori estimate of the interfacial film formation at the tool–chip interface. The procedure considers the chemical effect of the environment, along with the mechanical aspects of the surface texture of the cutting tool’s rake surface. Model performance, in terms of predicting machining forces and coefficient of friction, was validated with existing experimental data (Anand et al., Proceedings of the international conference on advancements and futuristic trends in mechanical and materials engineering, 5–7 October 2012, pp. 661–666). The outcome trend of the proposed model approximately matches with the experimental results. Further, the model tries to explain the impact of cutting tool’s surface roughness on overall tool–chip friction while performing intermittent cutting in the near-micromachining regime.</abstract><cop>New Delhi</cop><pub>Sage Publications Ltd</pub><doi>10.1177/25165984211048121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6775-8153</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2516-5984 |
ispartof | Journal of micromanufacturing (Online), 2022-05, Vol.5 (1), p.36-45 |
issn | 2516-5984 2516-5992 |
language | eng |
recordid | cdi_proquest_journals_2659557539 |
source | Sage Journals Online |
subjects | Coefficient of friction Cutting tools Friction Machining Materials engineering Micromachining Numerical models Surface layers Surface roughness |
title | A numerical model for tool–chip friction in intermittent orthogonal machining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20model%20for%20tool%E2%80%93chip%20friction%20in%20intermittent%20orthogonal%20machining&rft.jtitle=Journal%20of%20micromanufacturing%20(Online)&rft.au=Saini,%20Akash&rft.date=2022-05&rft.volume=5&rft.issue=1&rft.spage=36&rft.epage=45&rft.pages=36-45&rft.issn=2516-5984&rft.eissn=2516-5992&rft_id=info:doi/10.1177/25165984211048121&rft_dat=%3Cproquest_cross%3E2659557539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-13a19ac42a2f1a3a8932dafc7788380d0edd711301d3c14870dc2cd5a3f0fcc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659557539&rft_id=info:pmid/&rfr_iscdi=true |