Loading…

A novel model-based robust control design for collaborative robot joint module

In order to reduce the impact of load and system parameter changes on the dynamic performance of collaborative robot joint module, a novel robust control algorithm is proposed in this paper to solve the problem of dynamic control of collaborative robot joint module trajectory tracking. The controlle...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-05, Vol.236 (9), p.4520-4532
Main Authors: Zhen, ShengChao, Cui, WangXu, Liu, XiaoLi, Meng, GuanJun, Chen, Ye-Hwa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-6bcb2f3ef60bde2119fecfed987e172660becb7561592c4c0e2cd0a7c5fb22603
cites cdi_FETCH-LOGICAL-c312t-6bcb2f3ef60bde2119fecfed987e172660becb7561592c4c0e2cd0a7c5fb22603
container_end_page 4532
container_issue 9
container_start_page 4520
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 236
creator Zhen, ShengChao
Cui, WangXu
Liu, XiaoLi
Meng, GuanJun
Chen, Ye-Hwa
description In order to reduce the impact of load and system parameter changes on the dynamic performance of collaborative robot joint module, a novel robust control algorithm is proposed in this paper to solve the problem of dynamic control of collaborative robot joint module trajectory tracking. The controller is composed of two parts: one is a nominal control term designed based on the dynamical model, aiming to stabilize the nominal robot system; the other is a robust control term based on the Lyapunov method, aiming to eliminate the influence of uncertainty on tracking performance, where the uncertainties include nonlinear friction, parameter uncertainty, and external disturbances. The Lyapunov minimax method is adopted to prove that the system is uniformly bounded and uniformly ultimately bounded. We performed numerical simulation and experimental validation based on an actual collaborative robot joint module experimental platform and the rapid controller prototype cSPACE. The numerical simulation and experimental results show that the controller has excellent control performance for the collaborative robot joint module and provides more accurate trajectory tracking under the influence of uncertainties.
doi_str_mv 10.1177/09544062211054753
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659587218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062211054753</sage_id><sourcerecordid>2659587218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-6bcb2f3ef60bde2119fecfed987e172660becb7561592c4c0e2cd0a7c5fb22603</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8d03SJmmPy-IXLHrRc0nSydKSbdYkXfDfm7KCB3EuA2_eezPzELqlZEWplPek4VVFBGOUEl5JXp6hBSMVLVhTl-doMc-LmXCJrmIcSC4m-AK9rvHoj-Dw3nfgCq0idDh4PcWEjR9T8A53EPvdiK0PGXJOaR9U6o8w83zCg-_HNOsnB9fowioX4eanL9HH48P75rnYvj29bNbbwpSUpUJoo5ktwQqiO8g3NxaMha6pJVDJRIbBaMkF5Q0zlSHATEeUNNxqxgQpl-ju5HsI_nOCmNrBT2HMK9v8VsNryWidWfTEMsHHGMC2h9DvVfhqKWnn2No_sWXN6qSJage_rv8LvgFqnW1K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659587218</pqid></control><display><type>article</type><title>A novel model-based robust control design for collaborative robot joint module</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><source>IMechE Titles Via Sage</source><creator>Zhen, ShengChao ; Cui, WangXu ; Liu, XiaoLi ; Meng, GuanJun ; Chen, Ye-Hwa</creator><creatorcontrib>Zhen, ShengChao ; Cui, WangXu ; Liu, XiaoLi ; Meng, GuanJun ; Chen, Ye-Hwa</creatorcontrib><description>In order to reduce the impact of load and system parameter changes on the dynamic performance of collaborative robot joint module, a novel robust control algorithm is proposed in this paper to solve the problem of dynamic control of collaborative robot joint module trajectory tracking. The controller is composed of two parts: one is a nominal control term designed based on the dynamical model, aiming to stabilize the nominal robot system; the other is a robust control term based on the Lyapunov method, aiming to eliminate the influence of uncertainty on tracking performance, where the uncertainties include nonlinear friction, parameter uncertainty, and external disturbances. The Lyapunov minimax method is adopted to prove that the system is uniformly bounded and uniformly ultimately bounded. We performed numerical simulation and experimental validation based on an actual collaborative robot joint module experimental platform and the rapid controller prototype cSPACE. The numerical simulation and experimental results show that the controller has excellent control performance for the collaborative robot joint module and provides more accurate trajectory tracking under the influence of uncertainties.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062211054753</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Collaboration ; Computer simulation ; Control algorithms ; Control theory ; Controllers ; Dynamic control ; Dynamic models ; Minimax technique ; Modules ; Parameter uncertainty ; Robot control ; Robots ; Robust control ; Tracking control ; Trajectory control</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-05, Vol.236 (9), p.4520-4532</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-6bcb2f3ef60bde2119fecfed987e172660becb7561592c4c0e2cd0a7c5fb22603</citedby><cites>FETCH-LOGICAL-c312t-6bcb2f3ef60bde2119fecfed987e172660becb7561592c4c0e2cd0a7c5fb22603</cites><orcidid>0000-0001-7479-4251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062211054753$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062211054753$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21892,27901,27902,45035,45423</link.rule.ids></links><search><creatorcontrib>Zhen, ShengChao</creatorcontrib><creatorcontrib>Cui, WangXu</creatorcontrib><creatorcontrib>Liu, XiaoLi</creatorcontrib><creatorcontrib>Meng, GuanJun</creatorcontrib><creatorcontrib>Chen, Ye-Hwa</creatorcontrib><title>A novel model-based robust control design for collaborative robot joint module</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>In order to reduce the impact of load and system parameter changes on the dynamic performance of collaborative robot joint module, a novel robust control algorithm is proposed in this paper to solve the problem of dynamic control of collaborative robot joint module trajectory tracking. The controller is composed of two parts: one is a nominal control term designed based on the dynamical model, aiming to stabilize the nominal robot system; the other is a robust control term based on the Lyapunov method, aiming to eliminate the influence of uncertainty on tracking performance, where the uncertainties include nonlinear friction, parameter uncertainty, and external disturbances. The Lyapunov minimax method is adopted to prove that the system is uniformly bounded and uniformly ultimately bounded. We performed numerical simulation and experimental validation based on an actual collaborative robot joint module experimental platform and the rapid controller prototype cSPACE. The numerical simulation and experimental results show that the controller has excellent control performance for the collaborative robot joint module and provides more accurate trajectory tracking under the influence of uncertainties.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Dynamic control</subject><subject>Dynamic models</subject><subject>Minimax technique</subject><subject>Modules</subject><subject>Parameter uncertainty</subject><subject>Robot control</subject><subject>Robots</subject><subject>Robust control</subject><subject>Tracking control</subject><subject>Trajectory control</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLguvoDvAU8d03SJmmPy-IXLHrRc0nSydKSbdYkXfDfm7KCB3EuA2_eezPzELqlZEWplPek4VVFBGOUEl5JXp6hBSMVLVhTl-doMc-LmXCJrmIcSC4m-AK9rvHoj-Dw3nfgCq0idDh4PcWEjR9T8A53EPvdiK0PGXJOaR9U6o8w83zCg-_HNOsnB9fowioX4eanL9HH48P75rnYvj29bNbbwpSUpUJoo5ktwQqiO8g3NxaMha6pJVDJRIbBaMkF5Q0zlSHATEeUNNxqxgQpl-ju5HsI_nOCmNrBT2HMK9v8VsNryWidWfTEMsHHGMC2h9DvVfhqKWnn2No_sWXN6qSJage_rv8LvgFqnW1K</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Zhen, ShengChao</creator><creator>Cui, WangXu</creator><creator>Liu, XiaoLi</creator><creator>Meng, GuanJun</creator><creator>Chen, Ye-Hwa</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-7479-4251</orcidid></search><sort><creationdate>202205</creationdate><title>A novel model-based robust control design for collaborative robot joint module</title><author>Zhen, ShengChao ; Cui, WangXu ; Liu, XiaoLi ; Meng, GuanJun ; Chen, Ye-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-6bcb2f3ef60bde2119fecfed987e172660becb7561592c4c0e2cd0a7c5fb22603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Dynamic control</topic><topic>Dynamic models</topic><topic>Minimax technique</topic><topic>Modules</topic><topic>Parameter uncertainty</topic><topic>Robot control</topic><topic>Robots</topic><topic>Robust control</topic><topic>Tracking control</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhen, ShengChao</creatorcontrib><creatorcontrib>Cui, WangXu</creatorcontrib><creatorcontrib>Liu, XiaoLi</creatorcontrib><creatorcontrib>Meng, GuanJun</creatorcontrib><creatorcontrib>Chen, Ye-Hwa</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhen, ShengChao</au><au>Cui, WangXu</au><au>Liu, XiaoLi</au><au>Meng, GuanJun</au><au>Chen, Ye-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel model-based robust control design for collaborative robot joint module</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-05</date><risdate>2022</risdate><volume>236</volume><issue>9</issue><spage>4520</spage><epage>4532</epage><pages>4520-4532</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>In order to reduce the impact of load and system parameter changes on the dynamic performance of collaborative robot joint module, a novel robust control algorithm is proposed in this paper to solve the problem of dynamic control of collaborative robot joint module trajectory tracking. The controller is composed of two parts: one is a nominal control term designed based on the dynamical model, aiming to stabilize the nominal robot system; the other is a robust control term based on the Lyapunov method, aiming to eliminate the influence of uncertainty on tracking performance, where the uncertainties include nonlinear friction, parameter uncertainty, and external disturbances. The Lyapunov minimax method is adopted to prove that the system is uniformly bounded and uniformly ultimately bounded. We performed numerical simulation and experimental validation based on an actual collaborative robot joint module experimental platform and the rapid controller prototype cSPACE. The numerical simulation and experimental results show that the controller has excellent control performance for the collaborative robot joint module and provides more accurate trajectory tracking under the influence of uncertainties.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062211054753</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7479-4251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-05, Vol.236 (9), p.4520-4532
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2659587218
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list); IMechE Titles Via Sage
subjects Algorithms
Collaboration
Computer simulation
Control algorithms
Control theory
Controllers
Dynamic control
Dynamic models
Minimax technique
Modules
Parameter uncertainty
Robot control
Robots
Robust control
Tracking control
Trajectory control
title A novel model-based robust control design for collaborative robot joint module
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20model-based%20robust%20control%20design%20for%20collaborative%20robot%20joint%20module&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Zhen,%20ShengChao&rft.date=2022-05&rft.volume=236&rft.issue=9&rft.spage=4520&rft.epage=4532&rft.pages=4520-4532&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062211054753&rft_dat=%3Cproquest_cross%3E2659587218%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-6bcb2f3ef60bde2119fecfed987e172660becb7561592c4c0e2cd0a7c5fb22603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659587218&rft_id=info:pmid/&rft_sage_id=10.1177_09544062211054753&rfr_iscdi=true