Loading…

A Dual Global-Local Attention Network for Hyperspectral Band Selection

This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13
Main Authors: He, Ke, Sun, Weiwei, Yang, Gang, Meng, Xiangchao, Ren, Kai, Peng, Jiangtao, Du, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93
cites cdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator He, Ke
Sun, Weiwei
Yang, Gang
Meng, Xiangchao
Ren, Kai
Peng, Jiangtao
Du, Qian
description This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.
doi_str_mv 10.1109/TGRS.2022.3169018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660160507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760400</ieee_id><sourcerecordid>2660160507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ56k5m8lvXRVigKtq5DJpNA6zgZkxTpvzelxdXlwHfOhQ-hWwwTjEE-rOcfqwkBQiYVZhKwOEMjTKkogdX1ORoBlqwkQpJLdBXjFgDXFPMRmk2L553uinnnG92VS29ymKZk-7TxffFm068PX4XzoVjsBxviYE0KmXnUfVusbJdjBq_RhdNdtDenO0afs5f106Jcvs9fn6bL0hBZpdJSbVqqNSWCCK6d49SIhhPhiAaQ3EiJW-moIRWzDadgKyFaaaRzrG6crMbo_rg7BP-zszGprd-FPr9UhDHADCjwTOEjZYKPMVinhrD51mGvMKiDLnXQpQ661ElX7twdOxtr7T8vOYMaoPoDB35ltg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660160507</pqid></control><display><type>article</type><title>A Dual Global-Local Attention Network for Hyperspectral Band Selection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>He, Ke ; Sun, Weiwei ; Yang, Gang ; Meng, Xiangchao ; Ren, Kai ; Peng, Jiangtao ; Du, Qian</creator><creatorcontrib>He, Ke ; Sun, Weiwei ; Yang, Gang ; Meng, Xiangchao ; Ren, Kai ; Peng, Jiangtao ; Du, Qian</creatorcontrib><description>This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3169018</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band selection (BS) ; Computer applications ; Convolution ; Correlation ; Deep learning ; Feature extraction ; global–local attention ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image processing ; Image reconstruction ; Image restoration ; Indexes ; Modules ; spatial–spectral features ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</citedby><cites>FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</cites><orcidid>0000-0001-8354-7500 ; 0000-0003-3399-7858 ; 0000-0002-7001-2037 ; 0000-0002-9427-7048 ; 0000-0002-7405-3143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Ren, Kai</creatorcontrib><creatorcontrib>Peng, Jiangtao</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>A Dual Global-Local Attention Network for Hyperspectral Band Selection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.</description><subject>Band selection (BS)</subject><subject>Computer applications</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>global–local attention</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Indexes</subject><subject>Modules</subject><subject>spatial–spectral features</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ56k5m8lvXRVigKtq5DJpNA6zgZkxTpvzelxdXlwHfOhQ-hWwwTjEE-rOcfqwkBQiYVZhKwOEMjTKkogdX1ORoBlqwkQpJLdBXjFgDXFPMRmk2L553uinnnG92VS29ymKZk-7TxffFm068PX4XzoVjsBxviYE0KmXnUfVusbJdjBq_RhdNdtDenO0afs5f106Jcvs9fn6bL0hBZpdJSbVqqNSWCCK6d49SIhhPhiAaQ3EiJW-moIRWzDadgKyFaaaRzrG6crMbo_rg7BP-zszGprd-FPr9UhDHADCjwTOEjZYKPMVinhrD51mGvMKiDLnXQpQ661ElX7twdOxtr7T8vOYMaoPoDB35ltg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>He, Ke</creator><creator>Sun, Weiwei</creator><creator>Yang, Gang</creator><creator>Meng, Xiangchao</creator><creator>Ren, Kai</creator><creator>Peng, Jiangtao</creator><creator>Du, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0003-3399-7858</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid><orcidid>https://orcid.org/0000-0002-9427-7048</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid></search><sort><creationdate>2022</creationdate><title>A Dual Global-Local Attention Network for Hyperspectral Band Selection</title><author>He, Ke ; Sun, Weiwei ; Yang, Gang ; Meng, Xiangchao ; Ren, Kai ; Peng, Jiangtao ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Band selection (BS)</topic><topic>Computer applications</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>global–local attention</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Indexes</topic><topic>Modules</topic><topic>spatial–spectral features</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Ren, Kai</creatorcontrib><creatorcontrib>Peng, Jiangtao</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ke</au><au>Sun, Weiwei</au><au>Yang, Gang</au><au>Meng, Xiangchao</au><au>Ren, Kai</au><au>Peng, Jiangtao</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Global-Local Attention Network for Hyperspectral Band Selection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3169018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0003-3399-7858</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid><orcidid>https://orcid.org/0000-0002-9427-7048</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2660160507
source IEEE Electronic Library (IEL) Journals
subjects Band selection (BS)
Computer applications
Convolution
Correlation
Deep learning
Feature extraction
global–local attention
hyperspectral image (HSI)
Hyperspectral imaging
Image processing
Image reconstruction
Image restoration
Indexes
Modules
spatial–spectral features
Training
title A Dual Global-Local Attention Network for Hyperspectral Band Selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Global-Local%20Attention%20Network%20for%20Hyperspectral%20Band%20Selection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=He,%20Ke&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3169018&rft_dat=%3Cproquest_cross%3E2660160507%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660160507&rft_id=info:pmid/&rft_ieee_id=9760400&rfr_iscdi=true