Loading…
A Dual Global-Local Attention Network for Hyperspectral Band Selection
This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93 |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | He, Ke Sun, Weiwei Yang, Gang Meng, Xiangchao Ren, Kai Peng, Jiangtao Du, Qian |
description | This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost. |
doi_str_mv | 10.1109/TGRS.2022.3169018 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660160507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760400</ieee_id><sourcerecordid>2660160507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ56k5m8lvXRVigKtq5DJpNA6zgZkxTpvzelxdXlwHfOhQ-hWwwTjEE-rOcfqwkBQiYVZhKwOEMjTKkogdX1ORoBlqwkQpJLdBXjFgDXFPMRmk2L553uinnnG92VS29ymKZk-7TxffFm068PX4XzoVjsBxviYE0KmXnUfVusbJdjBq_RhdNdtDenO0afs5f106Jcvs9fn6bL0hBZpdJSbVqqNSWCCK6d49SIhhPhiAaQ3EiJW-moIRWzDadgKyFaaaRzrG6crMbo_rg7BP-zszGprd-FPr9UhDHADCjwTOEjZYKPMVinhrD51mGvMKiDLnXQpQ661ElX7twdOxtr7T8vOYMaoPoDB35ltg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660160507</pqid></control><display><type>article</type><title>A Dual Global-Local Attention Network for Hyperspectral Band Selection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>He, Ke ; Sun, Weiwei ; Yang, Gang ; Meng, Xiangchao ; Ren, Kai ; Peng, Jiangtao ; Du, Qian</creator><creatorcontrib>He, Ke ; Sun, Weiwei ; Yang, Gang ; Meng, Xiangchao ; Ren, Kai ; Peng, Jiangtao ; Du, Qian</creatorcontrib><description>This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3169018</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band selection (BS) ; Computer applications ; Convolution ; Correlation ; Deep learning ; Feature extraction ; global–local attention ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image processing ; Image reconstruction ; Image restoration ; Indexes ; Modules ; spatial–spectral features ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</citedby><cites>FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</cites><orcidid>0000-0001-8354-7500 ; 0000-0003-3399-7858 ; 0000-0002-7001-2037 ; 0000-0002-9427-7048 ; 0000-0002-7405-3143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Ren, Kai</creatorcontrib><creatorcontrib>Peng, Jiangtao</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>A Dual Global-Local Attention Network for Hyperspectral Band Selection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.</description><subject>Band selection (BS)</subject><subject>Computer applications</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>global–local attention</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Indexes</subject><subject>Modules</subject><subject>spatial–spectral features</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ56k5m8lvXRVigKtq5DJpNA6zgZkxTpvzelxdXlwHfOhQ-hWwwTjEE-rOcfqwkBQiYVZhKwOEMjTKkogdX1ORoBlqwkQpJLdBXjFgDXFPMRmk2L553uinnnG92VS29ymKZk-7TxffFm068PX4XzoVjsBxviYE0KmXnUfVusbJdjBq_RhdNdtDenO0afs5f106Jcvs9fn6bL0hBZpdJSbVqqNSWCCK6d49SIhhPhiAaQ3EiJW-moIRWzDadgKyFaaaRzrG6crMbo_rg7BP-zszGprd-FPr9UhDHADCjwTOEjZYKPMVinhrD51mGvMKiDLnXQpQ661ElX7twdOxtr7T8vOYMaoPoDB35ltg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>He, Ke</creator><creator>Sun, Weiwei</creator><creator>Yang, Gang</creator><creator>Meng, Xiangchao</creator><creator>Ren, Kai</creator><creator>Peng, Jiangtao</creator><creator>Du, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0003-3399-7858</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid><orcidid>https://orcid.org/0000-0002-9427-7048</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid></search><sort><creationdate>2022</creationdate><title>A Dual Global-Local Attention Network for Hyperspectral Band Selection</title><author>He, Ke ; Sun, Weiwei ; Yang, Gang ; Meng, Xiangchao ; Ren, Kai ; Peng, Jiangtao ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Band selection (BS)</topic><topic>Computer applications</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>global–local attention</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Indexes</topic><topic>Modules</topic><topic>spatial–spectral features</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Ren, Kai</creatorcontrib><creatorcontrib>Peng, Jiangtao</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ke</au><au>Sun, Weiwei</au><au>Yang, Gang</au><au>Meng, Xiangchao</au><au>Ren, Kai</au><au>Peng, Jiangtao</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Global-Local Attention Network for Hyperspectral Band Selection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This article proposes a dual global-local attention network (DGLAnet), which is an end-to-end unsupervised band selection (UBS) method that fully utilizes spatial and spectral information in both global and local aspects. The DGLAnet assumes that BS can be realized using the hyperspectral image (HSI) reconstruction process. First, the DGLAnet implements a dual attention module to obtain spatial-spectral and global-local features to reweight the HSI data. It adopts bi-directional relations to grasp spatial and spectral features from a global perspective. Meanwhile, the DGLAnet extracts local features through max-pooling and mean-pooling and then merges them via the convolution operation. Global-local features are utilized to learn attention to recalibrate the original data, and the reconstruction module is adopted to restore the original image from the reweighted HSI data. Finally, a proper band subset is selected by the constructed band evaluation index. Experiments on three hyperspectral data show that the DGLAnet outperforms other state-of-the-art methods and uses all bands with a lower computational cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3169018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0003-3399-7858</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid><orcidid>https://orcid.org/0000-0002-9427-7048</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2660160507 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Band selection (BS) Computer applications Convolution Correlation Deep learning Feature extraction global–local attention hyperspectral image (HSI) Hyperspectral imaging Image processing Image reconstruction Image restoration Indexes Modules spatial–spectral features Training |
title | A Dual Global-Local Attention Network for Hyperspectral Band Selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Global-Local%20Attention%20Network%20for%20Hyperspectral%20Band%20Selection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=He,%20Ke&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3169018&rft_dat=%3Cproquest_cross%3E2660160507%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-e5acd5aa528287aff75c8b728f2a0097c991d9f5c236eb750e388d9c9ff64bf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660160507&rft_id=info:pmid/&rft_ieee_id=9760400&rfr_iscdi=true |