Loading…
Waserstein model reduction approach for parametrized flow problems in porous media
The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In...
Saved in:
Published in: | arXiv.org 2022-05 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Battisti, Beatrice Blickhan, Tobias Enchéry, Guillaume Ehrlacher, Virginie Lombardi, Damiano Mula, Olga |
description | The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2660191672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660191672</sourcerecordid><originalsourceid>FETCH-proquest_journals_26601916723</originalsourceid><addsrcrecordid>eNqNjrEKwjAURYMgWLT_8MC5kCa26iyKswiOEptXTEmampcg-PVm8AOc7nDugTNjhZCyrnYbIRasJBo456LdiqaRBbvcFGGgiGYE5zVaCKhTF40fQU1T8Kp7Qu8DTCoohzGYD2rorX9Dhg-LjiCrkw8-ETjURq3YvFeWsPztkq1Px-vhXGXhlZDiffApjBndRdvyel_nGPnf6wt0mkCi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660191672</pqid></control><display><type>article</type><title>Waserstein model reduction approach for parametrized flow problems in porous media</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Battisti, Beatrice ; Blickhan, Tobias ; Enchéry, Guillaume ; Ehrlacher, Virginie ; Lombardi, Damiano ; Mula, Olga</creator><creatorcontrib>Battisti, Beatrice ; Blickhan, Tobias ; Enchéry, Guillaume ; Ehrlacher, Virginie ; Lombardi, Damiano ; Mula, Olga</creatorcontrib><description>The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decay rate ; Model reduction ; Parameterization ; Porous media ; Reduced order models</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2660191672?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Battisti, Beatrice</creatorcontrib><creatorcontrib>Blickhan, Tobias</creatorcontrib><creatorcontrib>Enchéry, Guillaume</creatorcontrib><creatorcontrib>Ehrlacher, Virginie</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Mula, Olga</creatorcontrib><title>Waserstein model reduction approach for parametrized flow problems in porous media</title><title>arXiv.org</title><description>The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.</description><subject>Decay rate</subject><subject>Model reduction</subject><subject>Parameterization</subject><subject>Porous media</subject><subject>Reduced order models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjrEKwjAURYMgWLT_8MC5kCa26iyKswiOEptXTEmampcg-PVm8AOc7nDugTNjhZCyrnYbIRasJBo456LdiqaRBbvcFGGgiGYE5zVaCKhTF40fQU1T8Kp7Qu8DTCoohzGYD2rorX9Dhg-LjiCrkw8-ETjURq3YvFeWsPztkq1Px-vhXGXhlZDiffApjBndRdvyel_nGPnf6wt0mkCi</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Battisti, Beatrice</creator><creator>Blickhan, Tobias</creator><creator>Enchéry, Guillaume</creator><creator>Ehrlacher, Virginie</creator><creator>Lombardi, Damiano</creator><creator>Mula, Olga</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220505</creationdate><title>Waserstein model reduction approach for parametrized flow problems in porous media</title><author>Battisti, Beatrice ; Blickhan, Tobias ; Enchéry, Guillaume ; Ehrlacher, Virginie ; Lombardi, Damiano ; Mula, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26601916723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decay rate</topic><topic>Model reduction</topic><topic>Parameterization</topic><topic>Porous media</topic><topic>Reduced order models</topic><toplevel>online_resources</toplevel><creatorcontrib>Battisti, Beatrice</creatorcontrib><creatorcontrib>Blickhan, Tobias</creatorcontrib><creatorcontrib>Enchéry, Guillaume</creatorcontrib><creatorcontrib>Ehrlacher, Virginie</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Mula, Olga</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battisti, Beatrice</au><au>Blickhan, Tobias</au><au>Enchéry, Guillaume</au><au>Ehrlacher, Virginie</au><au>Lombardi, Damiano</au><au>Mula, Olga</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Waserstein model reduction approach for parametrized flow problems in porous media</atitle><jtitle>arXiv.org</jtitle><date>2022-05-05</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2660191672 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Decay rate Model reduction Parameterization Porous media Reduced order models |
title | Waserstein model reduction approach for parametrized flow problems in porous media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Waserstein%20model%20reduction%20approach%20for%20parametrized%20flow%20problems%20in%20porous%20media&rft.jtitle=arXiv.org&rft.au=Battisti,%20Beatrice&rft.date=2022-05-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2660191672%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26601916723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660191672&rft_id=info:pmid/&rfr_iscdi=true |