Loading…

Waserstein model reduction approach for parametrized flow problems in porous media

The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-05
Main Authors: Battisti, Beatrice, Blickhan, Tobias, Enchéry, Guillaume, Ehrlacher, Virginie, Lombardi, Damiano, Mula, Olga
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Battisti, Beatrice
Blickhan, Tobias
Enchéry, Guillaume
Ehrlacher, Virginie
Lombardi, Damiano
Mula, Olga
description The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2660191672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660191672</sourcerecordid><originalsourceid>FETCH-proquest_journals_26601916723</originalsourceid><addsrcrecordid>eNqNjrEKwjAURYMgWLT_8MC5kCa26iyKswiOEptXTEmampcg-PVm8AOc7nDugTNjhZCyrnYbIRasJBo456LdiqaRBbvcFGGgiGYE5zVaCKhTF40fQU1T8Kp7Qu8DTCoohzGYD2rorX9Dhg-LjiCrkw8-ETjURq3YvFeWsPztkq1Px-vhXGXhlZDiffApjBndRdvyel_nGPnf6wt0mkCi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660191672</pqid></control><display><type>article</type><title>Waserstein model reduction approach for parametrized flow problems in porous media</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Battisti, Beatrice ; Blickhan, Tobias ; Enchéry, Guillaume ; Ehrlacher, Virginie ; Lombardi, Damiano ; Mula, Olga</creator><creatorcontrib>Battisti, Beatrice ; Blickhan, Tobias ; Enchéry, Guillaume ; Ehrlacher, Virginie ; Lombardi, Damiano ; Mula, Olga</creatorcontrib><description>The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decay rate ; Model reduction ; Parameterization ; Porous media ; Reduced order models</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2660191672?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Battisti, Beatrice</creatorcontrib><creatorcontrib>Blickhan, Tobias</creatorcontrib><creatorcontrib>Enchéry, Guillaume</creatorcontrib><creatorcontrib>Ehrlacher, Virginie</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Mula, Olga</creatorcontrib><title>Waserstein model reduction approach for parametrized flow problems in porous media</title><title>arXiv.org</title><description>The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.</description><subject>Decay rate</subject><subject>Model reduction</subject><subject>Parameterization</subject><subject>Porous media</subject><subject>Reduced order models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjrEKwjAURYMgWLT_8MC5kCa26iyKswiOEptXTEmampcg-PVm8AOc7nDugTNjhZCyrnYbIRasJBo456LdiqaRBbvcFGGgiGYE5zVaCKhTF40fQU1T8Kp7Qu8DTCoohzGYD2rorX9Dhg-LjiCrkw8-ETjURq3YvFeWsPztkq1Px-vhXGXhlZDiffApjBndRdvyel_nGPnf6wt0mkCi</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Battisti, Beatrice</creator><creator>Blickhan, Tobias</creator><creator>Enchéry, Guillaume</creator><creator>Ehrlacher, Virginie</creator><creator>Lombardi, Damiano</creator><creator>Mula, Olga</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220505</creationdate><title>Waserstein model reduction approach for parametrized flow problems in porous media</title><author>Battisti, Beatrice ; Blickhan, Tobias ; Enchéry, Guillaume ; Ehrlacher, Virginie ; Lombardi, Damiano ; Mula, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26601916723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decay rate</topic><topic>Model reduction</topic><topic>Parameterization</topic><topic>Porous media</topic><topic>Reduced order models</topic><toplevel>online_resources</toplevel><creatorcontrib>Battisti, Beatrice</creatorcontrib><creatorcontrib>Blickhan, Tobias</creatorcontrib><creatorcontrib>Enchéry, Guillaume</creatorcontrib><creatorcontrib>Ehrlacher, Virginie</creatorcontrib><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Mula, Olga</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battisti, Beatrice</au><au>Blickhan, Tobias</au><au>Enchéry, Guillaume</au><au>Ehrlacher, Virginie</au><au>Lombardi, Damiano</au><au>Mula, Olga</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Waserstein model reduction approach for parametrized flow problems in porous media</atitle><jtitle>arXiv.org</jtitle><date>2022-05-05</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The aim of this work is to build a reduced-order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model-order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in a previous work, based on the use of Wasserstein barycenters, to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2660191672
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Decay rate
Model reduction
Parameterization
Porous media
Reduced order models
title Waserstein model reduction approach for parametrized flow problems in porous media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Waserstein%20model%20reduction%20approach%20for%20parametrized%20flow%20problems%20in%20porous%20media&rft.jtitle=arXiv.org&rft.au=Battisti,%20Beatrice&rft.date=2022-05-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2660191672%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26601916723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660191672&rft_id=info:pmid/&rfr_iscdi=true