Loading…

Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel

Photodynamic therapy (PDT) is a non-invasive tumor ablation modality that can be enhanced in combination with concurrent chemotherapy. Previously, we demonstrated that liposomes containing a bilayer-anchored photosensitizer (porphyrin-phospholipid; PoP) can be loaded with drugs in their aqueous core...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2022-05, Vol.15 (5), p.4302-4309
Main Authors: Sun, Boyang, Ghosh, Sanjana, He, Xuedan, Huang, Wei-Chiao, Quinn, Breandan, Tian, Meiling, Jahagirdar, Dushyant, Mabrouk, Moustafa T., Ortega, Joaquin, Zhang, Yumiao, Shao, Shuai, Lovell, Jonathan F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-8df274cc3e1a18a3194f861d7173008ec1f6be8d346d6f2caeb69cf91b8a5fb43
cites cdi_FETCH-LOGICAL-c316t-8df274cc3e1a18a3194f861d7173008ec1f6be8d346d6f2caeb69cf91b8a5fb43
container_end_page 4309
container_issue 5
container_start_page 4302
container_title Nano research
container_volume 15
creator Sun, Boyang
Ghosh, Sanjana
He, Xuedan
Huang, Wei-Chiao
Quinn, Breandan
Tian, Meiling
Jahagirdar, Dushyant
Mabrouk, Moustafa T.
Ortega, Joaquin
Zhang, Yumiao
Shao, Shuai
Lovell, Jonathan F.
description Photodynamic therapy (PDT) is a non-invasive tumor ablation modality that can be enhanced in combination with concurrent chemotherapy. Previously, we demonstrated that liposomes containing a bilayer-anchored photosensitizer (porphyrin-phospholipid; PoP) can be loaded with drugs in their aqueous core to improve drug delivery and tumor ablation upon target tissue irradiation with red-light. In the present work, we demonstrate that this concept can be extended to drugs loaded within the hydrophobic bilayer of liposomes. Cabazitaxel (CTX) is a potent second generation taxane anti-cancer drug that was loaded in the bilayer of liposomes also containing 0.1 molar% PoP, generating CTX-loaded PoP liposomes (CTX-PoP-Lip). CTX-PoP-Lip showed unilamellar vesicle morphology, and exhibited integrity in storage and serum, while maintaining drug stability under laser irradiation. In vitro cell killing evaluation showed that red-light laser irradiation induced cytotoxicity in cells incubated with CTX-PoP-Lip, compared to control treatments. In vivo pharmacokinetic analysis revealed that following intravenous administration to mice, CTX and PoP exhibited somewhat altered circulation profiles, suggesting that the CTX may have exchanged with serum factors in blood. Nevertheless, when a single treatment of CTX-PoP-Lip with laser irradiation was administered to mice bearing human MIA Paca-2 tumors, tumors were effectively ablated whereas the equivalent chemotherapy and PDT monotherapies were ineffective. These results demonstrate the versatility of liposome delivery systems for achieving tumor ablation with chemophototherapy.
doi_str_mv 10.1007/s12274-022-4090-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660495152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660495152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8df274cc3e1a18a3194f861d7173008ec1f6be8d346d6f2caeb69cf91b8a5fb43</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmSbPZYylqhYIXPYdsNmlTtps12YLtrzd1FU_OZWbgvTfDh9AtkHsgpHxIQGnJMaEUc1IRzM7QBKpKYpLr_HcGyi_RVUpbQgQFLidIzbvBY6M7Y2PR-j6ksNNtYTZ2F_pNGMKwsVH3h2KffLcuat_qg424DUa3_mib4luUbJf8kPdY6K4pjK710Q_607bX6MLpNtmbnz5F70-Pb4slXr0-vyzmK2wYiAHLxuX3jWEWNEjNoOJOCmhKKBkh0hpworayYVw0wlGjbS0q4yqopZ65mrMpuhtz-xg-9jYNahv2scsnFRWC8GoGM5pVMKpMDClF61Qf_U7HgwKiThzVyFFljurEUbHsoaMnZW23tvEv-X_TFxjSeBI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660495152</pqid></control><display><type>article</type><title>Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel</title><source>Springer Nature</source><creator>Sun, Boyang ; Ghosh, Sanjana ; He, Xuedan ; Huang, Wei-Chiao ; Quinn, Breandan ; Tian, Meiling ; Jahagirdar, Dushyant ; Mabrouk, Moustafa T. ; Ortega, Joaquin ; Zhang, Yumiao ; Shao, Shuai ; Lovell, Jonathan F.</creator><creatorcontrib>Sun, Boyang ; Ghosh, Sanjana ; He, Xuedan ; Huang, Wei-Chiao ; Quinn, Breandan ; Tian, Meiling ; Jahagirdar, Dushyant ; Mabrouk, Moustafa T. ; Ortega, Joaquin ; Zhang, Yumiao ; Shao, Shuai ; Lovell, Jonathan F.</creatorcontrib><description>Photodynamic therapy (PDT) is a non-invasive tumor ablation modality that can be enhanced in combination with concurrent chemotherapy. Previously, we demonstrated that liposomes containing a bilayer-anchored photosensitizer (porphyrin-phospholipid; PoP) can be loaded with drugs in their aqueous core to improve drug delivery and tumor ablation upon target tissue irradiation with red-light. In the present work, we demonstrate that this concept can be extended to drugs loaded within the hydrophobic bilayer of liposomes. Cabazitaxel (CTX) is a potent second generation taxane anti-cancer drug that was loaded in the bilayer of liposomes also containing 0.1 molar% PoP, generating CTX-loaded PoP liposomes (CTX-PoP-Lip). CTX-PoP-Lip showed unilamellar vesicle morphology, and exhibited integrity in storage and serum, while maintaining drug stability under laser irradiation. In vitro cell killing evaluation showed that red-light laser irradiation induced cytotoxicity in cells incubated with CTX-PoP-Lip, compared to control treatments. In vivo pharmacokinetic analysis revealed that following intravenous administration to mice, CTX and PoP exhibited somewhat altered circulation profiles, suggesting that the CTX may have exchanged with serum factors in blood. Nevertheless, when a single treatment of CTX-PoP-Lip with laser irradiation was administered to mice bearing human MIA Paca-2 tumors, tumors were effectively ablated whereas the equivalent chemotherapy and PDT monotherapies were ineffective. These results demonstrate the versatility of liposome delivery systems for achieving tumor ablation with chemophototherapy.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4090-3</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Ablation ; Antitumor agents ; Atomic/Molecular Structure and Spectra ; Biocompatibility ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Chemotherapy ; Condensed Matter Physics ; Cytotoxicity ; Drug delivery ; Drug delivery systems ; Hydrophobicity ; Intravenous administration ; Irradiation ; Lasers ; Liposomes ; Materials Science ; Nanotechnology ; Pharmacokinetics ; Phospholipids ; Photodynamic therapy ; Porphyrins ; Research Article ; Stability analysis ; Toxicity ; Tumors</subject><ispartof>Nano research, 2022-05, Vol.15 (5), p.4302-4309</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8df274cc3e1a18a3194f861d7173008ec1f6be8d346d6f2caeb69cf91b8a5fb43</citedby><cites>FETCH-LOGICAL-c316t-8df274cc3e1a18a3194f861d7173008ec1f6be8d346d6f2caeb69cf91b8a5fb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, Boyang</creatorcontrib><creatorcontrib>Ghosh, Sanjana</creatorcontrib><creatorcontrib>He, Xuedan</creatorcontrib><creatorcontrib>Huang, Wei-Chiao</creatorcontrib><creatorcontrib>Quinn, Breandan</creatorcontrib><creatorcontrib>Tian, Meiling</creatorcontrib><creatorcontrib>Jahagirdar, Dushyant</creatorcontrib><creatorcontrib>Mabrouk, Moustafa T.</creatorcontrib><creatorcontrib>Ortega, Joaquin</creatorcontrib><creatorcontrib>Zhang, Yumiao</creatorcontrib><creatorcontrib>Shao, Shuai</creatorcontrib><creatorcontrib>Lovell, Jonathan F.</creatorcontrib><title>Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Photodynamic therapy (PDT) is a non-invasive tumor ablation modality that can be enhanced in combination with concurrent chemotherapy. Previously, we demonstrated that liposomes containing a bilayer-anchored photosensitizer (porphyrin-phospholipid; PoP) can be loaded with drugs in their aqueous core to improve drug delivery and tumor ablation upon target tissue irradiation with red-light. In the present work, we demonstrate that this concept can be extended to drugs loaded within the hydrophobic bilayer of liposomes. Cabazitaxel (CTX) is a potent second generation taxane anti-cancer drug that was loaded in the bilayer of liposomes also containing 0.1 molar% PoP, generating CTX-loaded PoP liposomes (CTX-PoP-Lip). CTX-PoP-Lip showed unilamellar vesicle morphology, and exhibited integrity in storage and serum, while maintaining drug stability under laser irradiation. In vitro cell killing evaluation showed that red-light laser irradiation induced cytotoxicity in cells incubated with CTX-PoP-Lip, compared to control treatments. In vivo pharmacokinetic analysis revealed that following intravenous administration to mice, CTX and PoP exhibited somewhat altered circulation profiles, suggesting that the CTX may have exchanged with serum factors in blood. Nevertheless, when a single treatment of CTX-PoP-Lip with laser irradiation was administered to mice bearing human MIA Paca-2 tumors, tumors were effectively ablated whereas the equivalent chemotherapy and PDT monotherapies were ineffective. These results demonstrate the versatility of liposome delivery systems for achieving tumor ablation with chemophototherapy.</description><subject>Ablation</subject><subject>Antitumor agents</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biocompatibility</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Chemotherapy</subject><subject>Condensed Matter Physics</subject><subject>Cytotoxicity</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Hydrophobicity</subject><subject>Intravenous administration</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Liposomes</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Pharmacokinetics</subject><subject>Phospholipids</subject><subject>Photodynamic therapy</subject><subject>Porphyrins</subject><subject>Research Article</subject><subject>Stability analysis</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmSbPZYylqhYIXPYdsNmlTtps12YLtrzd1FU_OZWbgvTfDh9AtkHsgpHxIQGnJMaEUc1IRzM7QBKpKYpLr_HcGyi_RVUpbQgQFLidIzbvBY6M7Y2PR-j6ksNNtYTZ2F_pNGMKwsVH3h2KffLcuat_qg424DUa3_mib4luUbJf8kPdY6K4pjK710Q_607bX6MLpNtmbnz5F70-Pb4slXr0-vyzmK2wYiAHLxuX3jWEWNEjNoOJOCmhKKBkh0hpworayYVw0wlGjbS0q4yqopZ65mrMpuhtz-xg-9jYNahv2scsnFRWC8GoGM5pVMKpMDClF61Qf_U7HgwKiThzVyFFljurEUbHsoaMnZW23tvEv-X_TFxjSeBI</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Sun, Boyang</creator><creator>Ghosh, Sanjana</creator><creator>He, Xuedan</creator><creator>Huang, Wei-Chiao</creator><creator>Quinn, Breandan</creator><creator>Tian, Meiling</creator><creator>Jahagirdar, Dushyant</creator><creator>Mabrouk, Moustafa T.</creator><creator>Ortega, Joaquin</creator><creator>Zhang, Yumiao</creator><creator>Shao, Shuai</creator><creator>Lovell, Jonathan F.</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220501</creationdate><title>Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel</title><author>Sun, Boyang ; Ghosh, Sanjana ; He, Xuedan ; Huang, Wei-Chiao ; Quinn, Breandan ; Tian, Meiling ; Jahagirdar, Dushyant ; Mabrouk, Moustafa T. ; Ortega, Joaquin ; Zhang, Yumiao ; Shao, Shuai ; Lovell, Jonathan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8df274cc3e1a18a3194f861d7173008ec1f6be8d346d6f2caeb69cf91b8a5fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Antitumor agents</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biocompatibility</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Chemotherapy</topic><topic>Condensed Matter Physics</topic><topic>Cytotoxicity</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Hydrophobicity</topic><topic>Intravenous administration</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Liposomes</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Pharmacokinetics</topic><topic>Phospholipids</topic><topic>Photodynamic therapy</topic><topic>Porphyrins</topic><topic>Research Article</topic><topic>Stability analysis</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Boyang</creatorcontrib><creatorcontrib>Ghosh, Sanjana</creatorcontrib><creatorcontrib>He, Xuedan</creatorcontrib><creatorcontrib>Huang, Wei-Chiao</creatorcontrib><creatorcontrib>Quinn, Breandan</creatorcontrib><creatorcontrib>Tian, Meiling</creatorcontrib><creatorcontrib>Jahagirdar, Dushyant</creatorcontrib><creatorcontrib>Mabrouk, Moustafa T.</creatorcontrib><creatorcontrib>Ortega, Joaquin</creatorcontrib><creatorcontrib>Zhang, Yumiao</creatorcontrib><creatorcontrib>Shao, Shuai</creatorcontrib><creatorcontrib>Lovell, Jonathan F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Boyang</au><au>Ghosh, Sanjana</au><au>He, Xuedan</au><au>Huang, Wei-Chiao</au><au>Quinn, Breandan</au><au>Tian, Meiling</au><au>Jahagirdar, Dushyant</au><au>Mabrouk, Moustafa T.</au><au>Ortega, Joaquin</au><au>Zhang, Yumiao</au><au>Shao, Shuai</au><au>Lovell, Jonathan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>4302</spage><epage>4309</epage><pages>4302-4309</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Photodynamic therapy (PDT) is a non-invasive tumor ablation modality that can be enhanced in combination with concurrent chemotherapy. Previously, we demonstrated that liposomes containing a bilayer-anchored photosensitizer (porphyrin-phospholipid; PoP) can be loaded with drugs in their aqueous core to improve drug delivery and tumor ablation upon target tissue irradiation with red-light. In the present work, we demonstrate that this concept can be extended to drugs loaded within the hydrophobic bilayer of liposomes. Cabazitaxel (CTX) is a potent second generation taxane anti-cancer drug that was loaded in the bilayer of liposomes also containing 0.1 molar% PoP, generating CTX-loaded PoP liposomes (CTX-PoP-Lip). CTX-PoP-Lip showed unilamellar vesicle morphology, and exhibited integrity in storage and serum, while maintaining drug stability under laser irradiation. In vitro cell killing evaluation showed that red-light laser irradiation induced cytotoxicity in cells incubated with CTX-PoP-Lip, compared to control treatments. In vivo pharmacokinetic analysis revealed that following intravenous administration to mice, CTX and PoP exhibited somewhat altered circulation profiles, suggesting that the CTX may have exchanged with serum factors in blood. Nevertheless, when a single treatment of CTX-PoP-Lip with laser irradiation was administered to mice bearing human MIA Paca-2 tumors, tumors were effectively ablated whereas the equivalent chemotherapy and PDT monotherapies were ineffective. These results demonstrate the versatility of liposome delivery systems for achieving tumor ablation with chemophototherapy.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4090-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-05, Vol.15 (5), p.4302-4309
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2660495152
source Springer Nature
subjects Ablation
Antitumor agents
Atomic/Molecular Structure and Spectra
Biocompatibility
Biomedicine
Biotechnology
Chemistry and Materials Science
Chemotherapy
Condensed Matter Physics
Cytotoxicity
Drug delivery
Drug delivery systems
Hydrophobicity
Intravenous administration
Irradiation
Lasers
Liposomes
Materials Science
Nanotechnology
Pharmacokinetics
Phospholipids
Photodynamic therapy
Porphyrins
Research Article
Stability analysis
Toxicity
Tumors
title Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-cancer%20liposomal%20chemophototherapy%20using%20bilayer-localized%20photosensitizer%20and%20cabazitaxel&rft.jtitle=Nano%20research&rft.au=Sun,%20Boyang&rft.date=2022-05-01&rft.volume=15&rft.issue=5&rft.spage=4302&rft.epage=4309&rft.pages=4302-4309&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4090-3&rft_dat=%3Cproquest_cross%3E2660495152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8df274cc3e1a18a3194f861d7173008ec1f6be8d346d6f2caeb69cf91b8a5fb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660495152&rft_id=info:pmid/&rfr_iscdi=true