Loading…

A non-uniform Berry-Esseen bound via Stein's method

This paper is part of our efforts to develop Stein's method beyond uniform bounds in normal approximation. Our main result is a proof for a non-uniform Berry–Esseen bound for independent and not necessarily identically distributed random variables without assuming the existence of third moments...

Full description

Saved in:
Bibliographic Details
Published in:Probability theory and related fields 2001-06, Vol.120 (2), p.236-254
Main Authors: CHEN, Louis H. Y, SHAO, Qi-Man
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-68713ce3f3ef510dd7c68f5981f2386144cdccf540bbc02b50f6eaea9e5a49b93
cites
container_end_page 254
container_issue 2
container_start_page 236
container_title Probability theory and related fields
container_volume 120
creator CHEN, Louis H. Y
SHAO, Qi-Man
description This paper is part of our efforts to develop Stein's method beyond uniform bounds in normal approximation. Our main result is a proof for a non-uniform Berry–Esseen bound for independent and not necessarily identically distributed random variables without assuming the existence of third moments. It is proved by combining truncation with Stein's method and by taking the concentration inequality approach, improved and adapted for non-uniform bounds. To illustrate the technique, we give a proof for a uniform Berry–Esseen bound without assuming the existence of third moments.
doi_str_mv 10.1007/PL00008782
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661265695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661265695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-68713ce3f3ef510dd7c68f5981f2386144cdccf540bbc02b50f6eaea9e5a49b93</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWKsXf8GCgiBE33xu9lhL_YCCgnpestk3uKVNarIr9N-7UkHnMpdnZmAIOWdwwwDK25cljDKl4QdkwqTglIOWh2QCrDTUgGLH5CTn1QhxIfmEiFkRYqBD6HxMm-IOU9rRRc6IoWjiENriq7PFa49duMrFBvuP2J6SI2_XGc9-fUre7xdv80e6fH54ms-W1AnOe6pNyYRD4QV6xaBtS6eNV5VhngujmZSudc4rCU3jgDcKvEaLtkJlZdVUYkou9r3bFD8HzH29ikMK42TNtWZcK12pkbreUy7FnBP6epu6jU27mkH9c0r9d8oIX_5W2uzs2icbXJf_JSoNTIhvvjpepw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661265695</pqid></control><display><type>article</type><title>A non-uniform Berry-Esseen bound via Stein's method</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>CHEN, Louis H. Y ; SHAO, Qi-Man</creator><creatorcontrib>CHEN, Louis H. Y ; SHAO, Qi-Man</creatorcontrib><description>This paper is part of our efforts to develop Stein's method beyond uniform bounds in normal approximation. Our main result is a proof for a non-uniform Berry–Esseen bound for independent and not necessarily identically distributed random variables without assuming the existence of third moments. It is proved by combining truncation with Stein's method and by taking the concentration inequality approach, improved and adapted for non-uniform bounds. To illustrate the technique, we give a proof for a uniform Berry–Esseen bound without assuming the existence of third moments.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/PL00008782</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Limit theorems ; Mathematics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; Stochastic processes</subject><ispartof>Probability theory and related fields, 2001-06, Vol.120 (2), p.236-254</ispartof><rights>2001 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2001.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-68713ce3f3ef510dd7c68f5981f2386144cdccf540bbc02b50f6eaea9e5a49b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2661265695/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2661265695?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1096013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, Louis H. Y</creatorcontrib><creatorcontrib>SHAO, Qi-Man</creatorcontrib><title>A non-uniform Berry-Esseen bound via Stein's method</title><title>Probability theory and related fields</title><description>This paper is part of our efforts to develop Stein's method beyond uniform bounds in normal approximation. Our main result is a proof for a non-uniform Berry–Esseen bound for independent and not necessarily identically distributed random variables without assuming the existence of third moments. It is proved by combining truncation with Stein's method and by taking the concentration inequality approach, improved and adapted for non-uniform bounds. To illustrate the technique, we give a proof for a uniform Berry–Esseen bound without assuming the existence of third moments.</description><subject>Exact sciences and technology</subject><subject>Limit theorems</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpNkE1LAzEYhIMoWKsXf8GCgiBE33xu9lhL_YCCgnpestk3uKVNarIr9N-7UkHnMpdnZmAIOWdwwwDK25cljDKl4QdkwqTglIOWh2QCrDTUgGLH5CTn1QhxIfmEiFkRYqBD6HxMm-IOU9rRRc6IoWjiENriq7PFa49duMrFBvuP2J6SI2_XGc9-fUre7xdv80e6fH54ms-W1AnOe6pNyYRD4QV6xaBtS6eNV5VhngujmZSudc4rCU3jgDcKvEaLtkJlZdVUYkou9r3bFD8HzH29ikMK42TNtWZcK12pkbreUy7FnBP6epu6jU27mkH9c0r9d8oIX_5W2uzs2icbXJf_JSoNTIhvvjpepw</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>CHEN, Louis H. Y</creator><creator>SHAO, Qi-Man</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20010601</creationdate><title>A non-uniform Berry-Esseen bound via Stein's method</title><author>CHEN, Louis H. Y ; SHAO, Qi-Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-68713ce3f3ef510dd7c68f5981f2386144cdccf540bbc02b50f6eaea9e5a49b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Exact sciences and technology</topic><topic>Limit theorems</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, Louis H. Y</creatorcontrib><creatorcontrib>SHAO, Qi-Man</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, Louis H. Y</au><au>SHAO, Qi-Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-uniform Berry-Esseen bound via Stein's method</atitle><jtitle>Probability theory and related fields</jtitle><date>2001-06-01</date><risdate>2001</risdate><volume>120</volume><issue>2</issue><spage>236</spage><epage>254</epage><pages>236-254</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>This paper is part of our efforts to develop Stein's method beyond uniform bounds in normal approximation. Our main result is a proof for a non-uniform Berry–Esseen bound for independent and not necessarily identically distributed random variables without assuming the existence of third moments. It is proved by combining truncation with Stein's method and by taking the concentration inequality approach, improved and adapted for non-uniform bounds. To illustrate the technique, we give a proof for a uniform Berry–Esseen bound without assuming the existence of third moments.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/PL00008782</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2001-06, Vol.120 (2), p.236-254
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2661265695
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global; Springer Nature
subjects Exact sciences and technology
Limit theorems
Mathematics
Probability
Probability and statistics
Probability theory and stochastic processes
Random variables
Sciences and techniques of general use
Stochastic processes
title A non-uniform Berry-Esseen bound via Stein's method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-uniform%20Berry-Esseen%20bound%20via%20Stein's%20method&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=CHEN,%20Louis%20H.%20Y&rft.date=2001-06-01&rft.volume=120&rft.issue=2&rft.spage=236&rft.epage=254&rft.pages=236-254&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/PL00008782&rft_dat=%3Cproquest_cross%3E2661265695%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-68713ce3f3ef510dd7c68f5981f2386144cdccf540bbc02b50f6eaea9e5a49b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661265695&rft_id=info:pmid/&rfr_iscdi=true