Loading…
Green Electro-Synthesized MIL-101(Fe) and Its Aspirin Detoxification Performance Compared to MOF-808
In this research, the performance of metal–organic frameworks (MOFs) of MIL-101(Fe) and MOF-808 as aspirin detoxification agents was evaluated. MIL-101(Fe) was successfully prepared for the first time using the electrochemical method for 30 min under room temperature and pressure. MIL-101(Fe) detoxi...
Saved in:
Published in: | Journal of inorganic and organometallic polymers and materials 2022-05, Vol.32 (5), p.1828-1839 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, the performance of metal–organic frameworks (MOFs) of MIL-101(Fe) and MOF-808 as aspirin detoxification agents was evaluated. MIL-101(Fe) was successfully prepared for the first time using the electrochemical method for 30 min under room temperature and pressure. MIL-101(Fe) detoxification capacity was compared to that of MOF-808, which was synthesized by a common solvothermal method at 135 °C for 24 h. The obtained materials were fully confirmed by X-ray diffraction (XRD) with the appearance of MIL-101(Fe) characteristic peaks (at 2θ 8.5°; 9°;16.7°) and MOF-808 (at 2θ 8.3°; 8.7°; 10°; 10.9°), and also confirmed by Fourier transform infrared (FTIR) spectroscopy that shows the coordination between metal and ligand. Based on scanning electron and transmission electron microscopy (SEM and TEM), MIL-101(Fe) has a micro-spindle shape with average particles size of 649.12 ± 73.32 nm, while MOF-808 showed irregular shape with average particle sizes of 169.73 ± 31.87 nm. Nitrogen sorption isotherm confirmed that both materials could be classified as micro to-meso porous materials by the pore radius of 1.89 nm for each materials with BET surface areas of 131 for MIL-101(Fe), and 847 m
2
/g for MOF-808, respectively. Based on an in vitro test, in a gastric simulation, MIL-101(Fe) decreased 11.78% of aspirin, while MOF-808 decreased 7.99%. In the intestinal simulation, MIL-101(Fe) and MOF-808 decreased aspirin by 24.06% and 26.74%, respectively. XRD analysis of the MOFs after the detoxification test showed that MIL-101(Fe) has lower stability than MOF-808. FTIR spectra confirmed that aspirin was successfully adsorbed into the MOFs. Transmission electron microscopy showed that aspirin interacted with MIL-101(Fe) on the outer surface and with MOF-808 on the inside of the pores.
Graphical Abstract |
---|---|
ISSN: | 1574-1443 1574-1451 |
DOI: | 10.1007/s10904-022-02235-x |