Loading…

High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single step

Semitransparent perovskite solar cells (STPSCs) continue to attract enormous interest because of their potential to provide low-cost renewable energy for building and automotive applications. Whilst many studies have shown that small molecule additives can improve STPSC properties, here we use relat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-05, Vol.10 (18), p.10227-10241
Main Authors: Alkhudhari, Osama M., Altujjar, Amal, Mokhtar, Muhamad Z., Spencer, Ben F., Chen, Qian, Thomas, Andrew G., Hodson, Nigel W., Wang, Xuelian, Hill, Patrick, Jacobs, Janet, Curry, Richard. J., Saunders, Brian R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semitransparent perovskite solar cells (STPSCs) continue to attract enormous interest because of their potential to provide low-cost renewable energy for building and automotive applications. Whilst many studies have shown that small molecule additives can improve STPSC properties, here we use relatively colossal poly( N -isopropylacrylamide) microgel particles (MGs) as polymer colloid sponge-like additives for the first time. Uniquely, these MGs have an inherent tendency to form highly ordered 2D non-close-packed particle arrays when deposited. Remarkably, this morphology is transcribed to the perovskite layer in the form of 2D non-close-packed nanopore arrays. The nanopores contain shunt-blocking MGs. The perovskite/MG-based STPSCs devices achieve a champion power conversion efficiency (PCE) of 11.64% for a device average visible transmittance (AVT) of 25.3%. The average light utilization efficiency (LUE) for the optimum system is 2.60% which is much higher than that for the MG-free control system and is larger than the 2.50% threshold that is required, in principle, for application. The MGs bind to the Pb 2+ ions and passivate the perovskite film. Finite difference time domain (FDTD) simulation data show that the MGs increase the AVTs of the films compared to uniform MG-free films. The MGs are proposed to act as nanoscale optical windows. Our new approach to preparing STPSCs delivers perovskite films containing 2D nanopore arrays in a single step that provide improved PCEs and AVTs and may accelerate future STPSC applications.
ISSN:2050-7488
2050-7496
DOI:10.1039/D1TA09815B