Loading…

An Optimal Control Problem for a Generalized Bioconvective Flow

In this work, we consider an optimal control problem for a generalized model for bioconvective flows, which are convection flows caused by the differences in the concentration of upward swimming microorganisms in a fluid. We firstly study the existence of weak solutions for the mathematical fluid mo...

Full description

Saved in:
Bibliographic Details
Published in:Acta applicandae mathematicae 2022-06, Vol.179 (1), Article 5
Main Authors: Boldrini, Jose L., de Aguiar, Rogério, Rojas-Medar, Marko A., Rojas-Medar, Maria D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2290-8f2d52e2541232e34a448661204d5c5c7f8ef9010bbc362b083b5e6c7cb200453
container_end_page
container_issue 1
container_start_page
container_title Acta applicandae mathematicae
container_volume 179
creator Boldrini, Jose L.
de Aguiar, Rogério
Rojas-Medar, Marko A.
Rojas-Medar, Maria D.
description In this work, we consider an optimal control problem for a generalized model for bioconvective flows, which are convection flows caused by the differences in the concentration of upward swimming microorganisms in a fluid. We firstly study the existence of weak solutions for the mathematical fluid model; then we prove the existence of optimal controls and obtain the corresponding first order optimality conditions by using the Dubovitskii-Milyutin formalism.
doi_str_mv 10.1007/s10440-022-00491-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661722439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661722439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2290-8f2d52e2541232e34a448661204d5c5c7f8ef9010bbc362b083b5e6c7cb200453</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRuenz-STKhEtCBVKgPMVuI6KFUaFzstgl-PIUhsTG-59zzdQ8glh2sOkN1EDlICA0QGIAvO4IhMuMqQFSD0MZkA1xnLgRen5CzGDQCIQusJuZ31dLUb2m3V0dL3Q_AdfQq-7tyWNj7Qii5c70LVtZ9uTe9ab31_cHZoD47OO_9-Tk6aqovu4vdOycv8_rl8YMvV4rGcLZlFLIDlDa4VOlSSo0AnZCVlrjVHkGtllc2a3DUFcKhrKzTWkItaOW0zW2MapMSUXI3cXfBvexcHs_H70KeXBhMnQ5SiSCkcUzb4GINrzC6kaeHDcDDfoswoyiRR5keUgVQSYymmcP_qwh_6n9YXvL9oww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661722439</pqid></control><display><type>article</type><title>An Optimal Control Problem for a Generalized Bioconvective Flow</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Boldrini, Jose L. ; de Aguiar, Rogério ; Rojas-Medar, Marko A. ; Rojas-Medar, Maria D.</creator><creatorcontrib>Boldrini, Jose L. ; de Aguiar, Rogério ; Rojas-Medar, Marko A. ; Rojas-Medar, Maria D.</creatorcontrib><description>In this work, we consider an optimal control problem for a generalized model for bioconvective flows, which are convection flows caused by the differences in the concentration of upward swimming microorganisms in a fluid. We firstly study the existence of weak solutions for the mathematical fluid model; then we prove the existence of optimal controls and obtain the corresponding first order optimality conditions by using the Dubovitskii-Milyutin formalism.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-022-00491-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Approximation ; Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Microorganisms ; Navier-Stokes equations ; Optimal control ; Optimization ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Swimming ; Viscosity</subject><ispartof>Acta applicandae mathematicae, 2022-06, Vol.179 (1), Article 5</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2290-8f2d52e2541232e34a448661204d5c5c7f8ef9010bbc362b083b5e6c7cb200453</cites><orcidid>0000-0001-8921-3413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2661722439/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2661722439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11670,27906,27907,36042,44345,74645</link.rule.ids></links><search><creatorcontrib>Boldrini, Jose L.</creatorcontrib><creatorcontrib>de Aguiar, Rogério</creatorcontrib><creatorcontrib>Rojas-Medar, Marko A.</creatorcontrib><creatorcontrib>Rojas-Medar, Maria D.</creatorcontrib><title>An Optimal Control Problem for a Generalized Bioconvective Flow</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>In this work, we consider an optimal control problem for a generalized model for bioconvective flows, which are convection flows caused by the differences in the concentration of upward swimming microorganisms in a fluid. We firstly study the existence of weak solutions for the mathematical fluid model; then we prove the existence of optimal controls and obtain the corresponding first order optimality conditions by using the Dubovitskii-Milyutin formalism.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Microorganisms</subject><subject>Navier-Stokes equations</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Swimming</subject><subject>Viscosity</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRuenz-STKhEtCBVKgPMVuI6KFUaFzstgl-PIUhsTG-59zzdQ8glh2sOkN1EDlICA0QGIAvO4IhMuMqQFSD0MZkA1xnLgRen5CzGDQCIQusJuZ31dLUb2m3V0dL3Q_AdfQq-7tyWNj7Qii5c70LVtZ9uTe9ab31_cHZoD47OO_9-Tk6aqovu4vdOycv8_rl8YMvV4rGcLZlFLIDlDa4VOlSSo0AnZCVlrjVHkGtllc2a3DUFcKhrKzTWkItaOW0zW2MapMSUXI3cXfBvexcHs_H70KeXBhMnQ5SiSCkcUzb4GINrzC6kaeHDcDDfoswoyiRR5keUgVQSYymmcP_qwh_6n9YXvL9oww</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Boldrini, Jose L.</creator><creator>de Aguiar, Rogério</creator><creator>Rojas-Medar, Marko A.</creator><creator>Rojas-Medar, Maria D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8921-3413</orcidid></search><sort><creationdate>20220601</creationdate><title>An Optimal Control Problem for a Generalized Bioconvective Flow</title><author>Boldrini, Jose L. ; de Aguiar, Rogério ; Rojas-Medar, Marko A. ; Rojas-Medar, Maria D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2290-8f2d52e2541232e34a448661204d5c5c7f8ef9010bbc362b083b5e6c7cb200453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Microorganisms</topic><topic>Navier-Stokes equations</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Swimming</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boldrini, Jose L.</creatorcontrib><creatorcontrib>de Aguiar, Rogério</creatorcontrib><creatorcontrib>Rojas-Medar, Marko A.</creatorcontrib><creatorcontrib>Rojas-Medar, Maria D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boldrini, Jose L.</au><au>de Aguiar, Rogério</au><au>Rojas-Medar, Marko A.</au><au>Rojas-Medar, Maria D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Control Problem for a Generalized Bioconvective Flow</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>179</volume><issue>1</issue><artnum>5</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>In this work, we consider an optimal control problem for a generalized model for bioconvective flows, which are convection flows caused by the differences in the concentration of upward swimming microorganisms in a fluid. We firstly study the existence of weak solutions for the mathematical fluid model; then we prove the existence of optimal controls and obtain the corresponding first order optimality conditions by using the Dubovitskii-Milyutin formalism.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-022-00491-0</doi><orcidid>https://orcid.org/0000-0001-8921-3413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2022-06, Vol.179 (1), Article 5
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_2661722439
source ABI/INFORM global; Springer Nature
subjects Applications of Mathematics
Approximation
Boundary conditions
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Microorganisms
Navier-Stokes equations
Optimal control
Optimization
Partial Differential Equations
Probability Theory and Stochastic Processes
Swimming
Viscosity
title An Optimal Control Problem for a Generalized Bioconvective Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Control%20Problem%20for%20a%20Generalized%20Bioconvective%20Flow&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Boldrini,%20Jose%20L.&rft.date=2022-06-01&rft.volume=179&rft.issue=1&rft.artnum=5&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-022-00491-0&rft_dat=%3Cproquest_cross%3E2661722439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2290-8f2d52e2541232e34a448661204d5c5c7f8ef9010bbc362b083b5e6c7cb200453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661722439&rft_id=info:pmid/&rfr_iscdi=true