Loading…

Optimal Change-point Testing for High-dimensional Linear Models with Temporal Dependence

In this paper, we study change-point testing for high-dimensional linear models, an important problem that has not been well explored in the literature. Specifically, we propose a quadratic-form cumulative sum (CUSUM) statistic to test the stability of regression coefficients in high-dimensional lin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Zhao, Zifeng, Luo, Xiaokai, Liu, Zongge, Wang, Daren
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhao, Zifeng
Luo, Xiaokai
Liu, Zongge
Wang, Daren
description In this paper, we study change-point testing for high-dimensional linear models, an important problem that has not been well explored in the literature. Specifically, we propose a quadratic-form cumulative sum (CUSUM) statistic to test the stability of regression coefficients in high-dimensional linear models. The test controls type-I error at any desired level and is robust to temporally dependent observations. We establish its asymptotic distribution under the null hypothesis, and demonstrate that it is asymptotically powerful against multiple change-point alternatives and achieves the optimal detection boundary for a wide class of high-dimensional models. We further develop an adaptive procedure to estimate the tuning parameters of the test, making our method practical in applications. Additionally, we extend our approach to localize change-points in the regression time series and establish sharp error bounds for our change-point estimator. Extensive numerical experiments and a real data application in macroeconomics are conducted to demonstrate the promising performance and practical utility of the proposed test.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2661731894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661731894</sourcerecordid><originalsourceid>FETCH-proquest_journals_26617318943</originalsourceid><addsrcrecordid>eNqNzL0OgjAYheHGxESi3EMT5ybQ8ueMGgaNC4MbaeQDPgJtbSHevh28AKcznCfvhgRciJgVCec7Ejo3RlHEs5ynqQjI82EWnOVEy0GqHpjRqBZag1tQ9bTTllbYD6zFGZRDrby8oQJp6V23MDn6wWXwfjba-u8MBlQL6gUHsu3k5CD87Z4cr5e6rJix-r36fjPq1fqea3iWxbmIi1Mi_lNfiiRB3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661731894</pqid></control><display><type>article</type><title>Optimal Change-point Testing for High-dimensional Linear Models with Temporal Dependence</title><source>Publicly Available Content Database</source><creator>Zhao, Zifeng ; Luo, Xiaokai ; Liu, Zongge ; Wang, Daren</creator><creatorcontrib>Zhao, Zifeng ; Luo, Xiaokai ; Liu, Zongge ; Wang, Daren</creatorcontrib><description>In this paper, we study change-point testing for high-dimensional linear models, an important problem that has not been well explored in the literature. Specifically, we propose a quadratic-form cumulative sum (CUSUM) statistic to test the stability of regression coefficients in high-dimensional linear models. The test controls type-I error at any desired level and is robust to temporally dependent observations. We establish its asymptotic distribution under the null hypothesis, and demonstrate that it is asymptotically powerful against multiple change-point alternatives and achieves the optimal detection boundary for a wide class of high-dimensional models. We further develop an adaptive procedure to estimate the tuning parameters of the test, making our method practical in applications. Additionally, we extend our approach to localize change-points in the regression time series and establish sharp error bounds for our change-point estimator. Extensive numerical experiments and a real data application in macroeconomics are conducted to demonstrate the promising performance and practical utility of the proposed test.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Economic models ; Hypotheses ; Model testing ; Regression coefficients</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2661731894?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Zhao, Zifeng</creatorcontrib><creatorcontrib>Luo, Xiaokai</creatorcontrib><creatorcontrib>Liu, Zongge</creatorcontrib><creatorcontrib>Wang, Daren</creatorcontrib><title>Optimal Change-point Testing for High-dimensional Linear Models with Temporal Dependence</title><title>arXiv.org</title><description>In this paper, we study change-point testing for high-dimensional linear models, an important problem that has not been well explored in the literature. Specifically, we propose a quadratic-form cumulative sum (CUSUM) statistic to test the stability of regression coefficients in high-dimensional linear models. The test controls type-I error at any desired level and is robust to temporally dependent observations. We establish its asymptotic distribution under the null hypothesis, and demonstrate that it is asymptotically powerful against multiple change-point alternatives and achieves the optimal detection boundary for a wide class of high-dimensional models. We further develop an adaptive procedure to estimate the tuning parameters of the test, making our method practical in applications. Additionally, we extend our approach to localize change-points in the regression time series and establish sharp error bounds for our change-point estimator. Extensive numerical experiments and a real data application in macroeconomics are conducted to demonstrate the promising performance and practical utility of the proposed test.</description><subject>Asymptotic properties</subject><subject>Economic models</subject><subject>Hypotheses</subject><subject>Model testing</subject><subject>Regression coefficients</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzL0OgjAYheHGxESi3EMT5ybQ8ueMGgaNC4MbaeQDPgJtbSHevh28AKcznCfvhgRciJgVCec7Ejo3RlHEs5ynqQjI82EWnOVEy0GqHpjRqBZag1tQ9bTTllbYD6zFGZRDrby8oQJp6V23MDn6wWXwfjba-u8MBlQL6gUHsu3k5CD87Z4cr5e6rJix-r36fjPq1fqea3iWxbmIi1Mi_lNfiiRB3Q</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Zhao, Zifeng</creator><creator>Luo, Xiaokai</creator><creator>Liu, Zongge</creator><creator>Wang, Daren</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241022</creationdate><title>Optimal Change-point Testing for High-dimensional Linear Models with Temporal Dependence</title><author>Zhao, Zifeng ; Luo, Xiaokai ; Liu, Zongge ; Wang, Daren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26617318943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Economic models</topic><topic>Hypotheses</topic><topic>Model testing</topic><topic>Regression coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zifeng</creatorcontrib><creatorcontrib>Luo, Xiaokai</creatorcontrib><creatorcontrib>Liu, Zongge</creatorcontrib><creatorcontrib>Wang, Daren</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zifeng</au><au>Luo, Xiaokai</au><au>Liu, Zongge</au><au>Wang, Daren</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal Change-point Testing for High-dimensional Linear Models with Temporal Dependence</atitle><jtitle>arXiv.org</jtitle><date>2024-10-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study change-point testing for high-dimensional linear models, an important problem that has not been well explored in the literature. Specifically, we propose a quadratic-form cumulative sum (CUSUM) statistic to test the stability of regression coefficients in high-dimensional linear models. The test controls type-I error at any desired level and is robust to temporally dependent observations. We establish its asymptotic distribution under the null hypothesis, and demonstrate that it is asymptotically powerful against multiple change-point alternatives and achieves the optimal detection boundary for a wide class of high-dimensional models. We further develop an adaptive procedure to estimate the tuning parameters of the test, making our method practical in applications. Additionally, we extend our approach to localize change-points in the regression time series and establish sharp error bounds for our change-point estimator. Extensive numerical experiments and a real data application in macroeconomics are conducted to demonstrate the promising performance and practical utility of the proposed test.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2661731894
source Publicly Available Content Database
subjects Asymptotic properties
Economic models
Hypotheses
Model testing
Regression coefficients
title Optimal Change-point Testing for High-dimensional Linear Models with Temporal Dependence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20Change-point%20Testing%20for%20High-dimensional%20Linear%20Models%20with%20Temporal%20Dependence&rft.jtitle=arXiv.org&rft.au=Zhao,%20Zifeng&rft.date=2024-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2661731894%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26617318943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661731894&rft_id=info:pmid/&rfr_iscdi=true