Loading…

Stabilizing a spherical pendulum on a quadrotor

In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem address...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2022-05, Vol.24 (3), p.1112-1121
Main Authors: Nayak, Aradhana, Banavar, Ravi N., Maithripala, D. H. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503
cites cdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503
container_end_page 1121
container_issue 3
container_start_page 1112
container_title Asian journal of control
container_volume 24
creator Nayak, Aradhana
Banavar, Ravi N.
Maithripala, D. H. S.
description In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum.
doi_str_mv 10.1002/asjc.2577
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661796646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661796646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</originalsourceid><addsrcrecordid>eNp1kMFOhDAQhhujievqwTcg8eSB3bbAlB43RFfNJh5Wz02BqUJYyrYQsz69IF49zWTyzcyfj5BbRleMUr7Wvi5WPBHijCyYjOIQqIzOxz4BFqbAk0ty5X1NKbAoTRZkve91XjXVd9V-BDrw3Se6qtBN0GFbDs1wCGw7zo-DLp3trbsmF0Y3Hm_-6pK8Pz68ZU_h7nX7nG12YcGlEGEkdc6NjHPBczmmScAgSpMaFscyRWBG0oIboUsUpQbkkWSYUkQD1PCERktyN9_tnD0O6HtV28G140vFAZiQADGM1P1MFc5679CozlUH7U6KUTX5UJMPNfkY2fXMflUNnv4H1Wb_kv1u_AAeVGE6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661796646</pqid></control><display><type>article</type><title>Stabilizing a spherical pendulum on a quadrotor</title><source>Wiley</source><creator>Nayak, Aradhana ; Banavar, Ravi N. ; Maithripala, D. H. S.</creator><creatorcontrib>Nayak, Aradhana ; Banavar, Ravi N. ; Maithripala, D. H. S.</creatorcontrib><description>In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2577</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>backstepping ; Control theory ; Maneuvers ; Mathematical analysis ; nonlinear geometric control ; Pendulums ; swing up spherical pendulum</subject><ispartof>Asian journal of control, 2022-05, Vol.24 (3), p.1112-1121</ispartof><rights>2021 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><rights>2022 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</citedby><cites>FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</cites><orcidid>0000-0003-0380-5894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nayak, Aradhana</creatorcontrib><creatorcontrib>Banavar, Ravi N.</creatorcontrib><creatorcontrib>Maithripala, D. H. S.</creatorcontrib><title>Stabilizing a spherical pendulum on a quadrotor</title><title>Asian journal of control</title><description>In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum.</description><subject>backstepping</subject><subject>Control theory</subject><subject>Maneuvers</subject><subject>Mathematical analysis</subject><subject>nonlinear geometric control</subject><subject>Pendulums</subject><subject>swing up spherical pendulum</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOhDAQhhujievqwTcg8eSB3bbAlB43RFfNJh5Wz02BqUJYyrYQsz69IF49zWTyzcyfj5BbRleMUr7Wvi5WPBHijCyYjOIQqIzOxz4BFqbAk0ty5X1NKbAoTRZkve91XjXVd9V-BDrw3Se6qtBN0GFbDs1wCGw7zo-DLp3trbsmF0Y3Hm_-6pK8Pz68ZU_h7nX7nG12YcGlEGEkdc6NjHPBczmmScAgSpMaFscyRWBG0oIboUsUpQbkkWSYUkQD1PCERktyN9_tnD0O6HtV28G140vFAZiQADGM1P1MFc5679CozlUH7U6KUTX5UJMPNfkY2fXMflUNnv4H1Wb_kv1u_AAeVGE6</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Nayak, Aradhana</creator><creator>Banavar, Ravi N.</creator><creator>Maithripala, D. H. S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-0380-5894</orcidid></search><sort><creationdate>202205</creationdate><title>Stabilizing a spherical pendulum on a quadrotor</title><author>Nayak, Aradhana ; Banavar, Ravi N. ; Maithripala, D. H. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>backstepping</topic><topic>Control theory</topic><topic>Maneuvers</topic><topic>Mathematical analysis</topic><topic>nonlinear geometric control</topic><topic>Pendulums</topic><topic>swing up spherical pendulum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Aradhana</creatorcontrib><creatorcontrib>Banavar, Ravi N.</creatorcontrib><creatorcontrib>Maithripala, D. H. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Aradhana</au><au>Banavar, Ravi N.</au><au>Maithripala, D. H. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing a spherical pendulum on a quadrotor</atitle><jtitle>Asian journal of control</jtitle><date>2022-05</date><risdate>2022</risdate><volume>24</volume><issue>3</issue><spage>1112</spage><epage>1121</epage><pages>1112-1121</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2577</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0380-5894</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2022-05, Vol.24 (3), p.1112-1121
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2661796646
source Wiley
subjects backstepping
Control theory
Maneuvers
Mathematical analysis
nonlinear geometric control
Pendulums
swing up spherical pendulum
title Stabilizing a spherical pendulum on a quadrotor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20a%20spherical%20pendulum%20on%20a%20quadrotor&rft.jtitle=Asian%20journal%20of%20control&rft.au=Nayak,%20Aradhana&rft.date=2022-05&rft.volume=24&rft.issue=3&rft.spage=1112&rft.epage=1121&rft.pages=1112-1121&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2577&rft_dat=%3Cproquest_cross%3E2661796646%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661796646&rft_id=info:pmid/&rfr_iscdi=true