Loading…
Stabilizing a spherical pendulum on a quadrotor
In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem address...
Saved in:
Published in: | Asian journal of control 2022-05, Vol.24 (3), p.1112-1121 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503 |
---|---|
cites | cdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503 |
container_end_page | 1121 |
container_issue | 3 |
container_start_page | 1112 |
container_title | Asian journal of control |
container_volume | 24 |
creator | Nayak, Aradhana Banavar, Ravi N. Maithripala, D. H. S. |
description | In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum. |
doi_str_mv | 10.1002/asjc.2577 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661796646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661796646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</originalsourceid><addsrcrecordid>eNp1kMFOhDAQhhujievqwTcg8eSB3bbAlB43RFfNJh5Wz02BqUJYyrYQsz69IF49zWTyzcyfj5BbRleMUr7Wvi5WPBHijCyYjOIQqIzOxz4BFqbAk0ty5X1NKbAoTRZkve91XjXVd9V-BDrw3Se6qtBN0GFbDs1wCGw7zo-DLp3trbsmF0Y3Hm_-6pK8Pz68ZU_h7nX7nG12YcGlEGEkdc6NjHPBczmmScAgSpMaFscyRWBG0oIboUsUpQbkkWSYUkQD1PCERktyN9_tnD0O6HtV28G140vFAZiQADGM1P1MFc5679CozlUH7U6KUTX5UJMPNfkY2fXMflUNnv4H1Wb_kv1u_AAeVGE6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661796646</pqid></control><display><type>article</type><title>Stabilizing a spherical pendulum on a quadrotor</title><source>Wiley</source><creator>Nayak, Aradhana ; Banavar, Ravi N. ; Maithripala, D. H. S.</creator><creatorcontrib>Nayak, Aradhana ; Banavar, Ravi N. ; Maithripala, D. H. S.</creatorcontrib><description>In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2577</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>backstepping ; Control theory ; Maneuvers ; Mathematical analysis ; nonlinear geometric control ; Pendulums ; swing up spherical pendulum</subject><ispartof>Asian journal of control, 2022-05, Vol.24 (3), p.1112-1121</ispartof><rights>2021 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><rights>2022 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</citedby><cites>FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</cites><orcidid>0000-0003-0380-5894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nayak, Aradhana</creatorcontrib><creatorcontrib>Banavar, Ravi N.</creatorcontrib><creatorcontrib>Maithripala, D. H. S.</creatorcontrib><title>Stabilizing a spherical pendulum on a quadrotor</title><title>Asian journal of control</title><description>In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum.</description><subject>backstepping</subject><subject>Control theory</subject><subject>Maneuvers</subject><subject>Mathematical analysis</subject><subject>nonlinear geometric control</subject><subject>Pendulums</subject><subject>swing up spherical pendulum</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOhDAQhhujievqwTcg8eSB3bbAlB43RFfNJh5Wz02BqUJYyrYQsz69IF49zWTyzcyfj5BbRleMUr7Wvi5WPBHijCyYjOIQqIzOxz4BFqbAk0ty5X1NKbAoTRZkve91XjXVd9V-BDrw3Se6qtBN0GFbDs1wCGw7zo-DLp3trbsmF0Y3Hm_-6pK8Pz68ZU_h7nX7nG12YcGlEGEkdc6NjHPBczmmScAgSpMaFscyRWBG0oIboUsUpQbkkWSYUkQD1PCERktyN9_tnD0O6HtV28G140vFAZiQADGM1P1MFc5679CozlUH7U6KUTX5UJMPNfkY2fXMflUNnv4H1Wb_kv1u_AAeVGE6</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Nayak, Aradhana</creator><creator>Banavar, Ravi N.</creator><creator>Maithripala, D. H. S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-0380-5894</orcidid></search><sort><creationdate>202205</creationdate><title>Stabilizing a spherical pendulum on a quadrotor</title><author>Nayak, Aradhana ; Banavar, Ravi N. ; Maithripala, D. H. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>backstepping</topic><topic>Control theory</topic><topic>Maneuvers</topic><topic>Mathematical analysis</topic><topic>nonlinear geometric control</topic><topic>Pendulums</topic><topic>swing up spherical pendulum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Aradhana</creatorcontrib><creatorcontrib>Banavar, Ravi N.</creatorcontrib><creatorcontrib>Maithripala, D. H. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Aradhana</au><au>Banavar, Ravi N.</au><au>Maithripala, D. H. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing a spherical pendulum on a quadrotor</atitle><jtitle>Asian journal of control</jtitle><date>2022-05</date><risdate>2022</risdate><volume>24</volume><issue>3</issue><spage>1112</spage><epage>1121</epage><pages>1112-1121</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>In this article, we design a backstepping control law based on geometric principles to swing up a spherical pendulum mounted on a moving quadrotor. The available degrees of freedom in the control vector also permit us to position the plane of the quadrotor parallel to the ground. The problem addressed here is, indeed, novel and has many practical applications which arise during the transport of a payload mounted on top of a quadrotor. The modeling and control law are coordinate‐free and thus avoid singularity issues. The geometric treatment of the problem greatly simplifies both the modeling and control law for the system. The control action is verified and supported by numerical experiments for aggressive maneuvers starting very close to the downward stable equilibrium position of the pendulum.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2577</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0380-5894</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2022-05, Vol.24 (3), p.1112-1121 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_2661796646 |
source | Wiley |
subjects | backstepping Control theory Maneuvers Mathematical analysis nonlinear geometric control Pendulums swing up spherical pendulum |
title | Stabilizing a spherical pendulum on a quadrotor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20a%20spherical%20pendulum%20on%20a%20quadrotor&rft.jtitle=Asian%20journal%20of%20control&rft.au=Nayak,%20Aradhana&rft.date=2022-05&rft.volume=24&rft.issue=3&rft.spage=1112&rft.epage=1121&rft.pages=1112-1121&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2577&rft_dat=%3Cproquest_cross%3E2661796646%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2977-39ab2f94b72b957756fee9f8f14498e61f90c2f7ade7da6e2391e80eef60f2503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661796646&rft_id=info:pmid/&rfr_iscdi=true |