Loading…
On quadrature rules for solving Partial Differential Equations using Neural Networks
Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives t...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2022-04, Vol.393, p.114710, Article 114710 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3 |
container_end_page | |
container_issue | |
container_start_page | 114710 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 393 |
creator | Rivera, Jon A. Taylor, Jamie M. Omella, Ángel J. Pardo, David |
description | Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.
•We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method. |
doi_str_mv | 10.1016/j.cma.2022.114710 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662023011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522000810</els_id><sourcerecordid>2662023011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4twRJ23TihMa40OaNg7jHIXURSlduzntEP-ejHLGF8v2-9rWw9g18BlwyG7rmd2ameBCzAASBfyETSBXRSxA5qdswnmSxioX6Tm78L7mIXIQE7ZZt9F-MCWZfiCMaGjQR1VHke-ag2s_oldDvTNN9OCqCgnb32IRLL3rWh8N_iha4UChvcL-q6NPf8nOKtN4vPrLU_b2uNjMn-Pl-ullfr-MrczyPpYCLIeE26wSPJfKSl4UNilTpYQ0NrWQgJEGRJ4iTwuVInBVlPBehmlSGjllN-PeHXX7AX2v626gNpzUIssCDMkBggpGlaXOe8JK78htDX1r4PoIT9c6wNNHeHqEFzx3owfD-weHpL112FosHaHtddm5f9w_9jp2Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662023011</pqid></control><display><type>article</type><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><source>ScienceDirect Journals</source><creator>Rivera, Jon A. ; Taylor, Jamie M. ; Omella, Ángel J. ; Pardo, David</creator><creatorcontrib>Rivera, Jon A. ; Taylor, Jamie M. ; Omella, Ángel J. ; Pardo, David</creatorcontrib><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.
•We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.114710</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Deep learning ; Least-Squares method ; Mathematical analysis ; Monte Carlo simulation ; Neural Networks ; Numerical integration ; Partial differential equations ; Polynomials ; Quadrature rules ; Quadratures ; Regularization ; Ritz method</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-04, Vol.393, p.114710, Article 114710</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Apr 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</citedby><cites>FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</cites><orcidid>0000-0002-0334-8454 ; 0000-0002-5423-828X ; 0000-0002-3143-9097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rivera, Jon A.</creatorcontrib><creatorcontrib>Taylor, Jamie M.</creatorcontrib><creatorcontrib>Omella, Ángel J.</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><title>Computer methods in applied mechanics and engineering</title><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.
•We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method.</description><subject>Approximation</subject><subject>Deep learning</subject><subject>Least-Squares method</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Neural Networks</subject><subject>Numerical integration</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Quadrature rules</subject><subject>Quadratures</subject><subject>Regularization</subject><subject>Ritz method</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4twRJ23TihMa40OaNg7jHIXURSlduzntEP-ejHLGF8v2-9rWw9g18BlwyG7rmd2ameBCzAASBfyETSBXRSxA5qdswnmSxioX6Tm78L7mIXIQE7ZZt9F-MCWZfiCMaGjQR1VHke-ag2s_oldDvTNN9OCqCgnb32IRLL3rWh8N_iha4UChvcL-q6NPf8nOKtN4vPrLU_b2uNjMn-Pl-ullfr-MrczyPpYCLIeE26wSPJfKSl4UNilTpYQ0NrWQgJEGRJ4iTwuVInBVlPBehmlSGjllN-PeHXX7AX2v626gNpzUIssCDMkBggpGlaXOe8JK78htDX1r4PoIT9c6wNNHeHqEFzx3owfD-weHpL112FosHaHtddm5f9w_9jp2Wg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Rivera, Jon A.</creator><creator>Taylor, Jamie M.</creator><creator>Omella, Ángel J.</creator><creator>Pardo, David</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0334-8454</orcidid><orcidid>https://orcid.org/0000-0002-5423-828X</orcidid><orcidid>https://orcid.org/0000-0002-3143-9097</orcidid></search><sort><creationdate>20220401</creationdate><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><author>Rivera, Jon A. ; Taylor, Jamie M. ; Omella, Ángel J. ; Pardo, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Deep learning</topic><topic>Least-Squares method</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Neural Networks</topic><topic>Numerical integration</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Quadrature rules</topic><topic>Quadratures</topic><topic>Regularization</topic><topic>Ritz method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera, Jon A.</creatorcontrib><creatorcontrib>Taylor, Jamie M.</creatorcontrib><creatorcontrib>Omella, Ángel J.</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera, Jon A.</au><au>Taylor, Jamie M.</au><au>Omella, Ángel J.</au><au>Pardo, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On quadrature rules for solving Partial Differential Equations using Neural Networks</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>393</volume><spage>114710</spage><pages>114710-</pages><artnum>114710</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.
•We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.114710</doi><orcidid>https://orcid.org/0000-0002-0334-8454</orcidid><orcidid>https://orcid.org/0000-0002-5423-828X</orcidid><orcidid>https://orcid.org/0000-0002-3143-9097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2022-04, Vol.393, p.114710, Article 114710 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2662023011 |
source | ScienceDirect Journals |
subjects | Approximation Deep learning Least-Squares method Mathematical analysis Monte Carlo simulation Neural Networks Numerical integration Partial differential equations Polynomials Quadrature rules Quadratures Regularization Ritz method |
title | On quadrature rules for solving Partial Differential Equations using Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20quadrature%20rules%20for%20solving%20Partial%20Differential%20Equations%20using%20Neural%20Networks&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Rivera,%20Jon%20A.&rft.date=2022-04-01&rft.volume=393&rft.spage=114710&rft.pages=114710-&rft.artnum=114710&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.114710&rft_dat=%3Cproquest_cross%3E2662023011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662023011&rft_id=info:pmid/&rfr_iscdi=true |