Loading…

On quadrature rules for solving Partial Differential Equations using Neural Networks

Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives t...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2022-04, Vol.393, p.114710, Article 114710
Main Authors: Rivera, Jon A., Taylor, Jamie M., Omella, Ángel J., Pardo, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3
cites cdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3
container_end_page
container_issue
container_start_page 114710
container_title Computer methods in applied mechanics and engineering
container_volume 393
creator Rivera, Jon A.
Taylor, Jamie M.
Omella, Ángel J.
Pardo, David
description Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks. •We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method.
doi_str_mv 10.1016/j.cma.2022.114710
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662023011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522000810</els_id><sourcerecordid>2662023011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4twRJ23TihMa40OaNg7jHIXURSlduzntEP-ejHLGF8v2-9rWw9g18BlwyG7rmd2ameBCzAASBfyETSBXRSxA5qdswnmSxioX6Tm78L7mIXIQE7ZZt9F-MCWZfiCMaGjQR1VHke-ag2s_oldDvTNN9OCqCgnb32IRLL3rWh8N_iha4UChvcL-q6NPf8nOKtN4vPrLU_b2uNjMn-Pl-ullfr-MrczyPpYCLIeE26wSPJfKSl4UNilTpYQ0NrWQgJEGRJ4iTwuVInBVlPBehmlSGjllN-PeHXX7AX2v626gNpzUIssCDMkBggpGlaXOe8JK78htDX1r4PoIT9c6wNNHeHqEFzx3owfD-weHpL112FosHaHtddm5f9w_9jp2Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662023011</pqid></control><display><type>article</type><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><source>ScienceDirect Journals</source><creator>Rivera, Jon A. ; Taylor, Jamie M. ; Omella, Ángel J. ; Pardo, David</creator><creatorcontrib>Rivera, Jon A. ; Taylor, Jamie M. ; Omella, Ángel J. ; Pardo, David</creatorcontrib><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks. •We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.114710</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Deep learning ; Least-Squares method ; Mathematical analysis ; Monte Carlo simulation ; Neural Networks ; Numerical integration ; Partial differential equations ; Polynomials ; Quadrature rules ; Quadratures ; Regularization ; Ritz method</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-04, Vol.393, p.114710, Article 114710</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Apr 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</citedby><cites>FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</cites><orcidid>0000-0002-0334-8454 ; 0000-0002-5423-828X ; 0000-0002-3143-9097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rivera, Jon A.</creatorcontrib><creatorcontrib>Taylor, Jamie M.</creatorcontrib><creatorcontrib>Omella, Ángel J.</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><title>Computer methods in applied mechanics and engineering</title><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks. •We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method.</description><subject>Approximation</subject><subject>Deep learning</subject><subject>Least-Squares method</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Neural Networks</subject><subject>Numerical integration</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Quadrature rules</subject><subject>Quadratures</subject><subject>Regularization</subject><subject>Ritz method</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4twRJ23TihMa40OaNg7jHIXURSlduzntEP-ejHLGF8v2-9rWw9g18BlwyG7rmd2ameBCzAASBfyETSBXRSxA5qdswnmSxioX6Tm78L7mIXIQE7ZZt9F-MCWZfiCMaGjQR1VHke-ag2s_oldDvTNN9OCqCgnb32IRLL3rWh8N_iha4UChvcL-q6NPf8nOKtN4vPrLU_b2uNjMn-Pl-ullfr-MrczyPpYCLIeE26wSPJfKSl4UNilTpYQ0NrWQgJEGRJ4iTwuVInBVlPBehmlSGjllN-PeHXX7AX2v626gNpzUIssCDMkBggpGlaXOe8JK78htDX1r4PoIT9c6wNNHeHqEFzx3owfD-weHpL112FosHaHtddm5f9w_9jp2Wg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Rivera, Jon A.</creator><creator>Taylor, Jamie M.</creator><creator>Omella, Ángel J.</creator><creator>Pardo, David</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0334-8454</orcidid><orcidid>https://orcid.org/0000-0002-5423-828X</orcidid><orcidid>https://orcid.org/0000-0002-3143-9097</orcidid></search><sort><creationdate>20220401</creationdate><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><author>Rivera, Jon A. ; Taylor, Jamie M. ; Omella, Ángel J. ; Pardo, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Deep learning</topic><topic>Least-Squares method</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Neural Networks</topic><topic>Numerical integration</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Quadrature rules</topic><topic>Quadratures</topic><topic>Regularization</topic><topic>Ritz method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera, Jon A.</creatorcontrib><creatorcontrib>Taylor, Jamie M.</creatorcontrib><creatorcontrib>Omella, Ángel J.</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera, Jon A.</au><au>Taylor, Jamie M.</au><au>Omella, Ángel J.</au><au>Pardo, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On quadrature rules for solving Partial Differential Equations using Neural Networks</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>393</volume><spage>114710</spage><pages>114710-</pages><artnum>114710</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks. •We analyze quadrature errors arising when solving PDEs using NNs.•We propose four different alternatives to overcome quadrature problems.•We test numerically three of the proposed alternatives and discuss their viability.•For dimension higher than three, we propose the use of Monte Carlo integration.•For dimension three or lower, we propose the use of an adaptive integration method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.114710</doi><orcidid>https://orcid.org/0000-0002-0334-8454</orcidid><orcidid>https://orcid.org/0000-0002-5423-828X</orcidid><orcidid>https://orcid.org/0000-0002-3143-9097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-04, Vol.393, p.114710, Article 114710
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2662023011
source ScienceDirect Journals
subjects Approximation
Deep learning
Least-Squares method
Mathematical analysis
Monte Carlo simulation
Neural Networks
Numerical integration
Partial differential equations
Polynomials
Quadrature rules
Quadratures
Regularization
Ritz method
title On quadrature rules for solving Partial Differential Equations using Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20quadrature%20rules%20for%20solving%20Partial%20Differential%20Equations%20using%20Neural%20Networks&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Rivera,%20Jon%20A.&rft.date=2022-04-01&rft.volume=393&rft.spage=114710&rft.pages=114710-&rft.artnum=114710&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.114710&rft_dat=%3Cproquest_cross%3E2662023011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-321c0140c6f20837c3099c4d57723ac5c141a3a1285e05975e1079d1bd3ac4da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662023011&rft_id=info:pmid/&rfr_iscdi=true