Loading…
Performance trade-offs in reconfigurable networks for HPC
Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes im...
Saved in:
Published in: | Journal of optical communications and networking 2022-06, Vol.14 (6), p.454-468 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3 |
container_end_page | 468 |
container_issue | 6 |
container_start_page | 454 |
container_title | Journal of optical communications and networking |
container_volume | 14 |
creator | Teh, Min Yee Wu, Zhenguo Glick, Madeleine Rumley, Sebastien Ghobadi, Manya Bergman, Keren |
description | Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns. |
doi_str_mv | 10.1364/JOCN.451760 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2662095871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772727</ieee_id><sourcerecordid>2662095871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpTIwsEYwoxRc7tjOiCCiooh1gthx_QEobFzsR4t_jKqi64W54dLp7EboEPAPC6N3Lsn6d0RI4w0doAhUlOWakOj7MBT5FZzGuMWYcoJygamWD82GrOm2zPihjc-9czNouC1b7zrUfQ1DNxmad7X98-IpZ4tl8VZ-jE6c20V789yl6f3x4q-f5Yvn0XN8vck0B-pxh1yijGxAGSseFMY0qCOZAXUWMKIxQoBtcOsGcwU4oTAU1hoEpCkKEIVN0Pe71sW9l1G1v9We6rLO6lyAYx7RM6GZEu-C_Bxt7ufZD6NJdsmDp66oUHJK6HZUOPsZgndyFdqvCrwQs9wHKfYByDDDpq1G31tqDrDgvUpE_iWtqbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662095871</pqid></control><display><type>article</type><title>Performance trade-offs in reconfigurable networks for HPC</title><source>IEEE Electronic Library (IEL) Journals</source><source>Jisc-Optica Publishing Group Read & Publish Agreement 2022-2024 – E Combination 1</source><creator>Teh, Min Yee ; Wu, Zhenguo ; Glick, Madeleine ; Rumley, Sebastien ; Ghobadi, Manya ; Bergman, Keren</creator><creatorcontrib>Teh, Min Yee ; Wu, Zhenguo ; Glick, Madeleine ; Rumley, Sebastien ; Ghobadi, Manya ; Bergman, Keren</creatorcontrib><description>Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.451760</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Bandwidths ; Circuits ; Communication ; Computation ; Computer architecture ; Data centers ; Design ; Fanout ; Network design ; Network latency ; Network topology ; Optical switches ; Power consumption ; Proposals ; Racks ; Reconfiguration ; Routing ; Switches ; Switching circuits ; Throughput ; Topology ; Tradeoffs ; Workload ; Workloads</subject><ispartof>Journal of optical communications and networking, 2022-06, Vol.14 (6), p.454-468</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</citedby><cites>FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</cites><orcidid>0000-0001-5547-9483 ; 0000-0003-3042-2039 ; 0000000330422039 ; 0000000155479483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772727$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1867045$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Teh, Min Yee</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Glick, Madeleine</creatorcontrib><creatorcontrib>Rumley, Sebastien</creatorcontrib><creatorcontrib>Ghobadi, Manya</creatorcontrib><creatorcontrib>Bergman, Keren</creatorcontrib><title>Performance trade-offs in reconfigurable networks for HPC</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns.</description><subject>Bandwidths</subject><subject>Circuits</subject><subject>Communication</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Design</subject><subject>Fanout</subject><subject>Network design</subject><subject>Network latency</subject><subject>Network topology</subject><subject>Optical switches</subject><subject>Power consumption</subject><subject>Proposals</subject><subject>Racks</subject><subject>Reconfiguration</subject><subject>Routing</subject><subject>Switches</subject><subject>Switching circuits</subject><subject>Throughput</subject><subject>Topology</subject><subject>Tradeoffs</subject><subject>Workload</subject><subject>Workloads</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo90D1PwzAQBmALgUQpTIwsEYwoxRc7tjOiCCiooh1gthx_QEobFzsR4t_jKqi64W54dLp7EboEPAPC6N3Lsn6d0RI4w0doAhUlOWakOj7MBT5FZzGuMWYcoJygamWD82GrOm2zPihjc-9czNouC1b7zrUfQ1DNxmad7X98-IpZ4tl8VZ-jE6c20V789yl6f3x4q-f5Yvn0XN8vck0B-pxh1yijGxAGSseFMY0qCOZAXUWMKIxQoBtcOsGcwU4oTAU1hoEpCkKEIVN0Pe71sW9l1G1v9We6rLO6lyAYx7RM6GZEu-C_Bxt7ufZD6NJdsmDp66oUHJK6HZUOPsZgndyFdqvCrwQs9wHKfYByDDDpq1G31tqDrDgvUpE_iWtqbQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Teh, Min Yee</creator><creator>Wu, Zhenguo</creator><creator>Glick, Madeleine</creator><creator>Rumley, Sebastien</creator><creator>Ghobadi, Manya</creator><creator>Bergman, Keren</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Optical Society of America</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5547-9483</orcidid><orcidid>https://orcid.org/0000-0003-3042-2039</orcidid><orcidid>https://orcid.org/0000000330422039</orcidid><orcidid>https://orcid.org/0000000155479483</orcidid></search><sort><creationdate>20220601</creationdate><title>Performance trade-offs in reconfigurable networks for HPC</title><author>Teh, Min Yee ; Wu, Zhenguo ; Glick, Madeleine ; Rumley, Sebastien ; Ghobadi, Manya ; Bergman, Keren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandwidths</topic><topic>Circuits</topic><topic>Communication</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Design</topic><topic>Fanout</topic><topic>Network design</topic><topic>Network latency</topic><topic>Network topology</topic><topic>Optical switches</topic><topic>Power consumption</topic><topic>Proposals</topic><topic>Racks</topic><topic>Reconfiguration</topic><topic>Routing</topic><topic>Switches</topic><topic>Switching circuits</topic><topic>Throughput</topic><topic>Topology</topic><topic>Tradeoffs</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teh, Min Yee</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Glick, Madeleine</creatorcontrib><creatorcontrib>Rumley, Sebastien</creatorcontrib><creatorcontrib>Ghobadi, Manya</creatorcontrib><creatorcontrib>Bergman, Keren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teh, Min Yee</au><au>Wu, Zhenguo</au><au>Glick, Madeleine</au><au>Rumley, Sebastien</au><au>Ghobadi, Manya</au><au>Bergman, Keren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance trade-offs in reconfigurable networks for HPC</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>454</spage><epage>468</epage><pages>454-468</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.451760</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5547-9483</orcidid><orcidid>https://orcid.org/0000-0003-3042-2039</orcidid><orcidid>https://orcid.org/0000000330422039</orcidid><orcidid>https://orcid.org/0000000155479483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0620 |
ispartof | Journal of optical communications and networking, 2022-06, Vol.14 (6), p.454-468 |
issn | 1943-0620 1943-0639 |
language | eng |
recordid | cdi_proquest_journals_2662095871 |
source | IEEE Electronic Library (IEL) Journals; Jisc-Optica Publishing Group Read & Publish Agreement 2022-2024 – E Combination 1 |
subjects | Bandwidths Circuits Communication Computation Computer architecture Data centers Design Fanout Network design Network latency Network topology Optical switches Power consumption Proposals Racks Reconfiguration Routing Switches Switching circuits Throughput Topology Tradeoffs Workload Workloads |
title | Performance trade-offs in reconfigurable networks for HPC |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20trade-offs%20in%20reconfigurable%20networks%20for%20HPC&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Teh,%20Min%20Yee&rft.date=2022-06-01&rft.volume=14&rft.issue=6&rft.spage=454&rft.epage=468&rft.pages=454-468&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.451760&rft_dat=%3Cproquest_ieee_%3E2662095871%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662095871&rft_id=info:pmid/&rft_ieee_id=9772727&rfr_iscdi=true |