Loading…

Performance trade-offs in reconfigurable networks for HPC

Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes im...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optical communications and networking 2022-06, Vol.14 (6), p.454-468
Main Authors: Teh, Min Yee, Wu, Zhenguo, Glick, Madeleine, Rumley, Sebastien, Ghobadi, Manya, Bergman, Keren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3
cites cdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3
container_end_page 468
container_issue 6
container_start_page 454
container_title Journal of optical communications and networking
container_volume 14
creator Teh, Min Yee
Wu, Zhenguo
Glick, Madeleine
Rumley, Sebastien
Ghobadi, Manya
Bergman, Keren
description Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns.
doi_str_mv 10.1364/JOCN.451760
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2662095871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772727</ieee_id><sourcerecordid>2662095871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpTIwsEYwoxRc7tjOiCCiooh1gthx_QEobFzsR4t_jKqi64W54dLp7EboEPAPC6N3Lsn6d0RI4w0doAhUlOWakOj7MBT5FZzGuMWYcoJygamWD82GrOm2zPihjc-9czNouC1b7zrUfQ1DNxmad7X98-IpZ4tl8VZ-jE6c20V789yl6f3x4q-f5Yvn0XN8vck0B-pxh1yijGxAGSseFMY0qCOZAXUWMKIxQoBtcOsGcwU4oTAU1hoEpCkKEIVN0Pe71sW9l1G1v9We6rLO6lyAYx7RM6GZEu-C_Bxt7ufZD6NJdsmDp66oUHJK6HZUOPsZgndyFdqvCrwQs9wHKfYByDDDpq1G31tqDrDgvUpE_iWtqbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662095871</pqid></control><display><type>article</type><title>Performance trade-offs in reconfigurable networks for HPC</title><source>IEEE Electronic Library (IEL) Journals</source><source>Jisc-Optica Publishing Group Read &amp; Publish Agreement 2022-2024 – E Combination 1</source><creator>Teh, Min Yee ; Wu, Zhenguo ; Glick, Madeleine ; Rumley, Sebastien ; Ghobadi, Manya ; Bergman, Keren</creator><creatorcontrib>Teh, Min Yee ; Wu, Zhenguo ; Glick, Madeleine ; Rumley, Sebastien ; Ghobadi, Manya ; Bergman, Keren</creatorcontrib><description>Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.451760</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Bandwidths ; Circuits ; Communication ; Computation ; Computer architecture ; Data centers ; Design ; Fanout ; Network design ; Network latency ; Network topology ; Optical switches ; Power consumption ; Proposals ; Racks ; Reconfiguration ; Routing ; Switches ; Switching circuits ; Throughput ; Topology ; Tradeoffs ; Workload ; Workloads</subject><ispartof>Journal of optical communications and networking, 2022-06, Vol.14 (6), p.454-468</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</citedby><cites>FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</cites><orcidid>0000-0001-5547-9483 ; 0000-0003-3042-2039 ; 0000000330422039 ; 0000000155479483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772727$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1867045$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Teh, Min Yee</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Glick, Madeleine</creatorcontrib><creatorcontrib>Rumley, Sebastien</creatorcontrib><creatorcontrib>Ghobadi, Manya</creatorcontrib><creatorcontrib>Bergman, Keren</creatorcontrib><title>Performance trade-offs in reconfigurable networks for HPC</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns.</description><subject>Bandwidths</subject><subject>Circuits</subject><subject>Communication</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Design</subject><subject>Fanout</subject><subject>Network design</subject><subject>Network latency</subject><subject>Network topology</subject><subject>Optical switches</subject><subject>Power consumption</subject><subject>Proposals</subject><subject>Racks</subject><subject>Reconfiguration</subject><subject>Routing</subject><subject>Switches</subject><subject>Switching circuits</subject><subject>Throughput</subject><subject>Topology</subject><subject>Tradeoffs</subject><subject>Workload</subject><subject>Workloads</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo90D1PwzAQBmALgUQpTIwsEYwoxRc7tjOiCCiooh1gthx_QEobFzsR4t_jKqi64W54dLp7EboEPAPC6N3Lsn6d0RI4w0doAhUlOWakOj7MBT5FZzGuMWYcoJygamWD82GrOm2zPihjc-9czNouC1b7zrUfQ1DNxmad7X98-IpZ4tl8VZ-jE6c20V789yl6f3x4q-f5Yvn0XN8vck0B-pxh1yijGxAGSseFMY0qCOZAXUWMKIxQoBtcOsGcwU4oTAU1hoEpCkKEIVN0Pe71sW9l1G1v9We6rLO6lyAYx7RM6GZEu-C_Bxt7ufZD6NJdsmDp66oUHJK6HZUOPsZgndyFdqvCrwQs9wHKfYByDDDpq1G31tqDrDgvUpE_iWtqbQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Teh, Min Yee</creator><creator>Wu, Zhenguo</creator><creator>Glick, Madeleine</creator><creator>Rumley, Sebastien</creator><creator>Ghobadi, Manya</creator><creator>Bergman, Keren</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Optical Society of America</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5547-9483</orcidid><orcidid>https://orcid.org/0000-0003-3042-2039</orcidid><orcidid>https://orcid.org/0000000330422039</orcidid><orcidid>https://orcid.org/0000000155479483</orcidid></search><sort><creationdate>20220601</creationdate><title>Performance trade-offs in reconfigurable networks for HPC</title><author>Teh, Min Yee ; Wu, Zhenguo ; Glick, Madeleine ; Rumley, Sebastien ; Ghobadi, Manya ; Bergman, Keren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandwidths</topic><topic>Circuits</topic><topic>Communication</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Design</topic><topic>Fanout</topic><topic>Network design</topic><topic>Network latency</topic><topic>Network topology</topic><topic>Optical switches</topic><topic>Power consumption</topic><topic>Proposals</topic><topic>Racks</topic><topic>Reconfiguration</topic><topic>Routing</topic><topic>Switches</topic><topic>Switching circuits</topic><topic>Throughput</topic><topic>Topology</topic><topic>Tradeoffs</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teh, Min Yee</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Glick, Madeleine</creatorcontrib><creatorcontrib>Rumley, Sebastien</creatorcontrib><creatorcontrib>Ghobadi, Manya</creatorcontrib><creatorcontrib>Bergman, Keren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teh, Min Yee</au><au>Wu, Zhenguo</au><au>Glick, Madeleine</au><au>Rumley, Sebastien</au><au>Ghobadi, Manya</au><au>Bergman, Keren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance trade-offs in reconfigurable networks for HPC</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>454</spage><epage>468</epage><pages>454-468</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These challenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is known about the relative performances and trade-offs among different reconfigurable network designs. We aim to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency on network performance. Our results, based on network simulations driven by real HPC and DC workloads, show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication patterns.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.451760</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5547-9483</orcidid><orcidid>https://orcid.org/0000-0003-3042-2039</orcidid><orcidid>https://orcid.org/0000000330422039</orcidid><orcidid>https://orcid.org/0000000155479483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2022-06, Vol.14 (6), p.454-468
issn 1943-0620
1943-0639
language eng
recordid cdi_proquest_journals_2662095871
source IEEE Electronic Library (IEL) Journals; Jisc-Optica Publishing Group Read & Publish Agreement 2022-2024 – E Combination 1
subjects Bandwidths
Circuits
Communication
Computation
Computer architecture
Data centers
Design
Fanout
Network design
Network latency
Network topology
Optical switches
Power consumption
Proposals
Racks
Reconfiguration
Routing
Switches
Switching circuits
Throughput
Topology
Tradeoffs
Workload
Workloads
title Performance trade-offs in reconfigurable networks for HPC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20trade-offs%20in%20reconfigurable%20networks%20for%20HPC&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Teh,%20Min%20Yee&rft.date=2022-06-01&rft.volume=14&rft.issue=6&rft.spage=454&rft.epage=468&rft.pages=454-468&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.451760&rft_dat=%3Cproquest_ieee_%3E2662095871%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-60fbadcb18d15f78ddba230714f93d82d8a1cb05f86fd0f8a0484dd61d22338d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662095871&rft_id=info:pmid/&rft_ieee_id=9772727&rfr_iscdi=true