Loading…
Time-optimal and privacy preserving route planning for carpool policy
To alleviate the traffic congestion caused by the sharp increase in the number of private cars and save commuting costs, taxi carpooling service has become the choice of many people. Current research on taxi carpooling services has focused on shortening the detour distances. While with the developme...
Saved in:
Published in: | World wide web (Bussum) 2022-05, Vol.25 (3), p.1151-1168 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To alleviate the traffic congestion caused by the sharp increase in the number of private cars and save commuting costs, taxi carpooling service has become the choice of many people. Current research on taxi carpooling services has focused on shortening the detour distances. While with the development of intelligent cities, efficiently match passengers and vehicles and planning routes become urgent. And the privacy between passengers in the taxi carpooling service also needs to be considered. In this paper, we propose a time-optimal and privacy-preserving carpool route planning system via deep reinforcement learning. This system uses the traffic information around the carpooling vehicle to optimize passengers’ travel time, not only to efficiently match passengers and vehicles but also to generate detailed route planning for carpooling vehicles. We conducted experiments on an Internet of Vehicles simulator CARLA, and the results demonstrate that our method is better than other advanced methods and has better performance in complex environments. |
---|---|
ISSN: | 1386-145X 1573-1413 |
DOI: | 10.1007/s11280-022-01026-1 |