Loading…
Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms
Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs an...
Saved in:
Published in: | Electronics (Basel) 2022-05, Vol.11 (9), p.1451 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703 |
container_end_page | |
container_issue | 9 |
container_start_page | 1451 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Zhang, An-Ning Chu, Shu-Chuan Song, Pei-Cheng Wang, Hui Pan, Jeng-Shyang |
description | Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms. |
doi_str_mv | 10.3390/electronics11091451 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662901339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662901339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWGo_gZeA59VJst1sjqXUP1CwYHte4iZpU3eTNckW_PbuWg8enMs8fjzeMA-hWwL3jAl40I2uU_DO1pEQECSfkws0ocBFJqigl3_0NZrFeIRhBGElgwmyWxk_8Ft90KpvrNtj6_Cy8b3CS992fRrRyp3skN9ql_AujmShTtLVWuHNQcZWJq-0xBvf9Y1M1ju8Ovmm_1GLZu-DTYc23qArI5uoZ797inaPq-3yOVu_Pr0sF-usZpSmTIGZUwNK1FJK_q6gBFKWheHKFBokSE5yQxg3OS0l55TnesSGCDa8xIFN0d05twv-s9cxVUffBzecrGhRUAFkaG1wsbOrDj7GoE3VBdvK8FURqMZaq39qZd-i4m94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662901339</pqid></control><display><type>article</type><title>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</title><source>Publicly Available Content Database</source><creator>Zhang, An-Ning ; Chu, Shu-Chuan ; Song, Pei-Cheng ; Wang, Hui ; Pan, Jeng-Shyang</creator><creatorcontrib>Zhang, An-Ning ; Chu, Shu-Chuan ; Song, Pei-Cheng ; Wang, Hui ; Pan, Jeng-Shyang</creatorcontrib><description>Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11091451</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cloud computing ; Computer networks ; Convergence ; Distributed processing ; Energy consumption ; Evolutionary algorithms ; Genetic algorithms ; Heuristic ; Local optimization ; Optimization ; Pheromones ; Population ; Quality of service ; Resource allocation ; Scheduling ; Task scheduling</subject><ispartof>Electronics (Basel), 2022-05, Vol.11 (9), p.1451</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</citedby><cites>FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</cites><orcidid>0000-0003-2117-0618 ; 0000-0002-9355-1797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2662901339/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2662901339?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Zhang, An-Ning</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Song, Pei-Cheng</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><title>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</title><title>Electronics (Basel)</title><description>Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms.</description><subject>Cloud computing</subject><subject>Computer networks</subject><subject>Convergence</subject><subject>Distributed processing</subject><subject>Energy consumption</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Local optimization</subject><subject>Optimization</subject><subject>Pheromones</subject><subject>Population</subject><subject>Quality of service</subject><subject>Resource allocation</subject><subject>Scheduling</subject><subject>Task scheduling</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE9LAzEQxYMoWGo_gZeA59VJst1sjqXUP1CwYHte4iZpU3eTNckW_PbuWg8enMs8fjzeMA-hWwL3jAl40I2uU_DO1pEQECSfkws0ocBFJqigl3_0NZrFeIRhBGElgwmyWxk_8Ft90KpvrNtj6_Cy8b3CS992fRrRyp3skN9ql_AujmShTtLVWuHNQcZWJq-0xBvf9Y1M1ju8Ovmm_1GLZu-DTYc23qArI5uoZ797inaPq-3yOVu_Pr0sF-usZpSmTIGZUwNK1FJK_q6gBFKWheHKFBokSE5yQxg3OS0l55TnesSGCDa8xIFN0d05twv-s9cxVUffBzecrGhRUAFkaG1wsbOrDj7GoE3VBdvK8FURqMZaq39qZd-i4m94</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhang, An-Ning</creator><creator>Chu, Shu-Chuan</creator><creator>Song, Pei-Cheng</creator><creator>Wang, Hui</creator><creator>Pan, Jeng-Shyang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid><orcidid>https://orcid.org/0000-0002-9355-1797</orcidid></search><sort><creationdate>20220501</creationdate><title>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</title><author>Zhang, An-Ning ; Chu, Shu-Chuan ; Song, Pei-Cheng ; Wang, Hui ; Pan, Jeng-Shyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cloud computing</topic><topic>Computer networks</topic><topic>Convergence</topic><topic>Distributed processing</topic><topic>Energy consumption</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Local optimization</topic><topic>Optimization</topic><topic>Pheromones</topic><topic>Population</topic><topic>Quality of service</topic><topic>Resource allocation</topic><topic>Scheduling</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, An-Ning</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Song, Pei-Cheng</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, An-Ning</au><au>Chu, Shu-Chuan</au><au>Song, Pei-Cheng</au><au>Wang, Hui</au><au>Pan, Jeng-Shyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>1451</spage><pages>1451-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11091451</doi><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid><orcidid>https://orcid.org/0000-0002-9355-1797</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-05, Vol.11 (9), p.1451 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2662901339 |
source | Publicly Available Content Database |
subjects | Cloud computing Computer networks Convergence Distributed processing Energy consumption Evolutionary algorithms Genetic algorithms Heuristic Local optimization Optimization Pheromones Population Quality of service Resource allocation Scheduling Task scheduling |
title | Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Scheduling%20in%20Cloud%20Computing%20Environment%20Using%20Advanced%20Phasmatodea%20Population%20Evolution%20Algorithms&rft.jtitle=Electronics%20(Basel)&rft.au=Zhang,%20An-Ning&rft.date=2022-05-01&rft.volume=11&rft.issue=9&rft.spage=1451&rft.pages=1451-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11091451&rft_dat=%3Cproquest_cross%3E2662901339%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662901339&rft_id=info:pmid/&rfr_iscdi=true |