Loading…

Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms

Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs an...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-05, Vol.11 (9), p.1451
Main Authors: Zhang, An-Ning, Chu, Shu-Chuan, Song, Pei-Cheng, Wang, Hui, Pan, Jeng-Shyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703
cites cdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703
container_end_page
container_issue 9
container_start_page 1451
container_title Electronics (Basel)
container_volume 11
creator Zhang, An-Ning
Chu, Shu-Chuan
Song, Pei-Cheng
Wang, Hui
Pan, Jeng-Shyang
description Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms.
doi_str_mv 10.3390/electronics11091451
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2662901339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662901339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWGo_gZeA59VJst1sjqXUP1CwYHte4iZpU3eTNckW_PbuWg8enMs8fjzeMA-hWwL3jAl40I2uU_DO1pEQECSfkws0ocBFJqigl3_0NZrFeIRhBGElgwmyWxk_8Ft90KpvrNtj6_Cy8b3CS992fRrRyp3skN9ql_AujmShTtLVWuHNQcZWJq-0xBvf9Y1M1ju8Ovmm_1GLZu-DTYc23qArI5uoZ797inaPq-3yOVu_Pr0sF-usZpSmTIGZUwNK1FJK_q6gBFKWheHKFBokSE5yQxg3OS0l55TnesSGCDa8xIFN0d05twv-s9cxVUffBzecrGhRUAFkaG1wsbOrDj7GoE3VBdvK8FURqMZaq39qZd-i4m94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662901339</pqid></control><display><type>article</type><title>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</title><source>Publicly Available Content Database</source><creator>Zhang, An-Ning ; Chu, Shu-Chuan ; Song, Pei-Cheng ; Wang, Hui ; Pan, Jeng-Shyang</creator><creatorcontrib>Zhang, An-Ning ; Chu, Shu-Chuan ; Song, Pei-Cheng ; Wang, Hui ; Pan, Jeng-Shyang</creatorcontrib><description>Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11091451</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cloud computing ; Computer networks ; Convergence ; Distributed processing ; Energy consumption ; Evolutionary algorithms ; Genetic algorithms ; Heuristic ; Local optimization ; Optimization ; Pheromones ; Population ; Quality of service ; Resource allocation ; Scheduling ; Task scheduling</subject><ispartof>Electronics (Basel), 2022-05, Vol.11 (9), p.1451</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</citedby><cites>FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</cites><orcidid>0000-0003-2117-0618 ; 0000-0002-9355-1797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2662901339/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2662901339?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Zhang, An-Ning</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Song, Pei-Cheng</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><title>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</title><title>Electronics (Basel)</title><description>Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms.</description><subject>Cloud computing</subject><subject>Computer networks</subject><subject>Convergence</subject><subject>Distributed processing</subject><subject>Energy consumption</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Local optimization</subject><subject>Optimization</subject><subject>Pheromones</subject><subject>Population</subject><subject>Quality of service</subject><subject>Resource allocation</subject><subject>Scheduling</subject><subject>Task scheduling</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE9LAzEQxYMoWGo_gZeA59VJst1sjqXUP1CwYHte4iZpU3eTNckW_PbuWg8enMs8fjzeMA-hWwL3jAl40I2uU_DO1pEQECSfkws0ocBFJqigl3_0NZrFeIRhBGElgwmyWxk_8Ft90KpvrNtj6_Cy8b3CS992fRrRyp3skN9ql_AujmShTtLVWuHNQcZWJq-0xBvf9Y1M1ju8Ovmm_1GLZu-DTYc23qArI5uoZ797inaPq-3yOVu_Pr0sF-usZpSmTIGZUwNK1FJK_q6gBFKWheHKFBokSE5yQxg3OS0l55TnesSGCDa8xIFN0d05twv-s9cxVUffBzecrGhRUAFkaG1wsbOrDj7GoE3VBdvK8FURqMZaq39qZd-i4m94</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhang, An-Ning</creator><creator>Chu, Shu-Chuan</creator><creator>Song, Pei-Cheng</creator><creator>Wang, Hui</creator><creator>Pan, Jeng-Shyang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid><orcidid>https://orcid.org/0000-0002-9355-1797</orcidid></search><sort><creationdate>20220501</creationdate><title>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</title><author>Zhang, An-Ning ; Chu, Shu-Chuan ; Song, Pei-Cheng ; Wang, Hui ; Pan, Jeng-Shyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cloud computing</topic><topic>Computer networks</topic><topic>Convergence</topic><topic>Distributed processing</topic><topic>Energy consumption</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Local optimization</topic><topic>Optimization</topic><topic>Pheromones</topic><topic>Population</topic><topic>Quality of service</topic><topic>Resource allocation</topic><topic>Scheduling</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, An-Ning</creatorcontrib><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Song, Pei-Cheng</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, An-Ning</au><au>Chu, Shu-Chuan</au><au>Song, Pei-Cheng</au><au>Wang, Hui</au><au>Pan, Jeng-Shyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>1451</spage><pages>1451-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Cloud computing seems to be the result of advancements in distributed computing, parallel computing, and network computing. The management and allocation of cloud resources have emerged as a central research direction. An intelligent resource allocation system can significantly minimize the costs and wasting of resources. In this paper, we present a task scheduling technique based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous cloud environment. The algorithm accelerates up the time taken for finding solutions by improving the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent the algorithm from entering local optimization and balance its exploration and development capabilities. Furthermore, the evaluation function is meant to find the best solutions by considering the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the algorithm solves the task scheduling problem in the cloud computing environment. This method has a faster convergence time and greater resource usage when compared to other algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11091451</doi><orcidid>https://orcid.org/0000-0003-2117-0618</orcidid><orcidid>https://orcid.org/0000-0002-9355-1797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-05, Vol.11 (9), p.1451
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2662901339
source Publicly Available Content Database
subjects Cloud computing
Computer networks
Convergence
Distributed processing
Energy consumption
Evolutionary algorithms
Genetic algorithms
Heuristic
Local optimization
Optimization
Pheromones
Population
Quality of service
Resource allocation
Scheduling
Task scheduling
title Task Scheduling in Cloud Computing Environment Using Advanced Phasmatodea Population Evolution Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Scheduling%20in%20Cloud%20Computing%20Environment%20Using%20Advanced%20Phasmatodea%20Population%20Evolution%20Algorithms&rft.jtitle=Electronics%20(Basel)&rft.au=Zhang,%20An-Ning&rft.date=2022-05-01&rft.volume=11&rft.issue=9&rft.spage=1451&rft.pages=1451-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11091451&rft_dat=%3Cproquest_cross%3E2662901339%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-d0f52f0d9caaa7bd0801886f7df6e0a0a714f137f428a77274ee0a0f193138703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662901339&rft_id=info:pmid/&rfr_iscdi=true