Loading…

Rescheduling Urban Rail Transit Trains to Serve Passengers from Uncertain Delayed High-Speed Railway Trains

This paper develops a multi-objective mixed-integer linear programming model for the problem of robust rescheduling for capacitated urban rail transit (URT) trains to serve passengers from delayed high-speed railway (HSR) trains. The capacity of each extra train is not assumed to be unlimited in thi...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-05, Vol.14 (9), p.5718
Main Authors: Wang, Wanqi, Bao, Yun, Long, Sihui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper develops a multi-objective mixed-integer linear programming model for the problem of robust rescheduling for capacitated urban rail transit (URT) trains to serve passengers from delayed high-speed railway (HSR) trains. The capacity of each extra train is not assumed to be unlimited in this paper. Robust passenger assignment constraints are developed to ensure that delayed passengers can board the URT trains under different random delay scenarios of HSR operations. Robust dispatching constraints of URT trains are designed for a stable disrupting number of URT trains across different scenarios. The multi-objective model is used to maximize the number of expected transported passengers and minimize the number of extra trains and operation-ending time of all extra trains. An iterative solution approach based on a revised version of the epsilon-constraint method combined with the weighted-sum method is designed for the computation of the multi-objective model. Computational experiments are performed on the Beijing URT lines and the Beijing-Shanghai HSR line. We evaluate the impact of the robustness constraints of passenger assignment and the number of extra trains to ensure that the number of trains are maintained and the passengers can successfully take the trains during different delayed scenarios.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14095718