Loading…

Propagation of Bessel-Gaussian Shell-model beam through a jet engine exhaust turbulence

In this work, the effects of a turbulent jet engine exhaust on the propagation properties of a partially coherent Bessel-Gaussian Schell-model beam (BGSMB) of all orders are investigated and developed. Theoretical expressions of the cross spectral density (CSD) function, spectral density, degree of...

Full description

Saved in:
Bibliographic Details
Published in:Optical and quantum electronics 2022, Vol.54 (6), Article 332
Main Authors: Nabil, H., Balhamri, A., Belafhal, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1643-d9c184edd7fff51d5399806cf7aad9c816a70c31bc224b811ffa24b0f77a47623
cites cdi_FETCH-LOGICAL-c1643-d9c184edd7fff51d5399806cf7aad9c816a70c31bc224b811ffa24b0f77a47623
container_end_page
container_issue 6
container_start_page
container_title Optical and quantum electronics
container_volume 54
creator Nabil, H.
Balhamri, A.
Belafhal, A.
description In this work, the effects of a turbulent jet engine exhaust on the propagation properties of a partially coherent Bessel-Gaussian Schell-model beam (BGSMB) of all orders are investigated and developed. Theoretical expressions of the cross spectral density (CSD) function, spectral density, degree of coherence and root-mean-square (r.m.s) beam width are derived with the help of the Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Based on our elaborated formulae, the influences of the initial beam parameters and the strength of turbulence on the behavior of the considered beam are numerically analyzed. It is shown that, by changing the source coherence width, the partially coherent BGSMB takes different shapes. For high source coherence width, the spectral density takes an elliptical shape, upon propagation distances; when the source coherence width decreasing the beam takes a well-like profile. If the source coherence width is small, the beam evolves into an dark hollow at short propagation distance. Also, our main found results, in the case of odd mode, the beam splits into two beams spot during its propagation. Compared with Gaussian Schell-model beam (GSMB), it has higher spreads and less influenced by the strength of turbulence if the source coherence width is lower. Consequently, this result will be useful for enhances the system performance.
doi_str_mv 10.1007/s11082-022-03743-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663485527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663485527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1643-d9c184edd7fff51d5399806cf7aad9c816a70c31bc224b811ffa24b0f77a47623</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9H8aZP0qKKrsKCgoreQtpO2S7dZkxb02xut4M3DMAPzfm-Gh9Apo-eMUnURGaOaE8pTCZUJIvbQguWKE83U2z5aUEEl0QUrDtFRjBtKqcxyukCvj8HvbGPHzg_YO3wFMUJPVnaKsbMDfmqh78nW19DjEuwWj23wU9NiizcwYhiabgAMH20CRjxOoZx6GCo4RgfO9hFOfvsSvdzePF_fkfXD6v76ck0qJtObdVExnUFdK-dczupcFIWmsnLK2rTTTFpFK8HKivOs1Iw5Z9NAnVI2U5KLJTqbfXfBv08QR7PxUxjSScOlFJnOc66Sis-qKvgYAzizC93Whk_DqPkO0MwBmhSg-QnQiASJGYpJPDQQ_qz_ob4A-O1zrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663485527</pqid></control><display><type>article</type><title>Propagation of Bessel-Gaussian Shell-model beam through a jet engine exhaust turbulence</title><source>Springer Nature</source><creator>Nabil, H. ; Balhamri, A. ; Belafhal, A.</creator><creatorcontrib>Nabil, H. ; Balhamri, A. ; Belafhal, A.</creatorcontrib><description>In this work, the effects of a turbulent jet engine exhaust on the propagation properties of a partially coherent Bessel-Gaussian Schell-model beam (BGSMB) of all orders are investigated and developed. Theoretical expressions of the cross spectral density (CSD) function, spectral density, degree of coherence and root-mean-square (r.m.s) beam width are derived with the help of the Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Based on our elaborated formulae, the influences of the initial beam parameters and the strength of turbulence on the behavior of the considered beam are numerically analyzed. It is shown that, by changing the source coherence width, the partially coherent BGSMB takes different shapes. For high source coherence width, the spectral density takes an elliptical shape, upon propagation distances; when the source coherence width decreasing the beam takes a well-like profile. If the source coherence width is small, the beam evolves into an dark hollow at short propagation distance. Also, our main found results, in the case of odd mode, the beam splits into two beams spot during its propagation. Compared with Gaussian Schell-model beam (GSMB), it has higher spreads and less influenced by the strength of turbulence if the source coherence width is lower. Consequently, this result will be useful for enhances the system performance.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-022-03743-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Coherence ; Computer Communication Networks ; Density ; Distribution functions ; Electrical Engineering ; Gaussian beams (optics) ; Jet engines ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Propagation ; Turbulence ; Turbulent jets ; Wigner distribution</subject><ispartof>Optical and quantum electronics, 2022, Vol.54 (6), Article 332</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1643-d9c184edd7fff51d5399806cf7aad9c816a70c31bc224b811ffa24b0f77a47623</citedby><cites>FETCH-LOGICAL-c1643-d9c184edd7fff51d5399806cf7aad9c816a70c31bc224b811ffa24b0f77a47623</cites><orcidid>0000-0003-2735-3108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nabil, H.</creatorcontrib><creatorcontrib>Balhamri, A.</creatorcontrib><creatorcontrib>Belafhal, A.</creatorcontrib><title>Propagation of Bessel-Gaussian Shell-model beam through a jet engine exhaust turbulence</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this work, the effects of a turbulent jet engine exhaust on the propagation properties of a partially coherent Bessel-Gaussian Schell-model beam (BGSMB) of all orders are investigated and developed. Theoretical expressions of the cross spectral density (CSD) function, spectral density, degree of coherence and root-mean-square (r.m.s) beam width are derived with the help of the Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Based on our elaborated formulae, the influences of the initial beam parameters and the strength of turbulence on the behavior of the considered beam are numerically analyzed. It is shown that, by changing the source coherence width, the partially coherent BGSMB takes different shapes. For high source coherence width, the spectral density takes an elliptical shape, upon propagation distances; when the source coherence width decreasing the beam takes a well-like profile. If the source coherence width is small, the beam evolves into an dark hollow at short propagation distance. Also, our main found results, in the case of odd mode, the beam splits into two beams spot during its propagation. Compared with Gaussian Schell-model beam (GSMB), it has higher spreads and less influenced by the strength of turbulence if the source coherence width is lower. Consequently, this result will be useful for enhances the system performance.</description><subject>Characterization and Evaluation of Materials</subject><subject>Coherence</subject><subject>Computer Communication Networks</subject><subject>Density</subject><subject>Distribution functions</subject><subject>Electrical Engineering</subject><subject>Gaussian beams (optics)</subject><subject>Jet engines</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Turbulence</subject><subject>Turbulent jets</subject><subject>Wigner distribution</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9H8aZP0qKKrsKCgoreQtpO2S7dZkxb02xut4M3DMAPzfm-Gh9Apo-eMUnURGaOaE8pTCZUJIvbQguWKE83U2z5aUEEl0QUrDtFRjBtKqcxyukCvj8HvbGPHzg_YO3wFMUJPVnaKsbMDfmqh78nW19DjEuwWj23wU9NiizcwYhiabgAMH20CRjxOoZx6GCo4RgfO9hFOfvsSvdzePF_fkfXD6v76ck0qJtObdVExnUFdK-dczupcFIWmsnLK2rTTTFpFK8HKivOs1Iw5Z9NAnVI2U5KLJTqbfXfBv08QR7PxUxjSScOlFJnOc66Sis-qKvgYAzizC93Whk_DqPkO0MwBmhSg-QnQiASJGYpJPDQQ_qz_ob4A-O1zrA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nabil, H.</creator><creator>Balhamri, A.</creator><creator>Belafhal, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2735-3108</orcidid></search><sort><creationdate>2022</creationdate><title>Propagation of Bessel-Gaussian Shell-model beam through a jet engine exhaust turbulence</title><author>Nabil, H. ; Balhamri, A. ; Belafhal, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1643-d9c184edd7fff51d5399806cf7aad9c816a70c31bc224b811ffa24b0f77a47623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Coherence</topic><topic>Computer Communication Networks</topic><topic>Density</topic><topic>Distribution functions</topic><topic>Electrical Engineering</topic><topic>Gaussian beams (optics)</topic><topic>Jet engines</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Turbulence</topic><topic>Turbulent jets</topic><topic>Wigner distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabil, H.</creatorcontrib><creatorcontrib>Balhamri, A.</creatorcontrib><creatorcontrib>Belafhal, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabil, H.</au><au>Balhamri, A.</au><au>Belafhal, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of Bessel-Gaussian Shell-model beam through a jet engine exhaust turbulence</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2022</date><risdate>2022</risdate><volume>54</volume><issue>6</issue><artnum>332</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this work, the effects of a turbulent jet engine exhaust on the propagation properties of a partially coherent Bessel-Gaussian Schell-model beam (BGSMB) of all orders are investigated and developed. Theoretical expressions of the cross spectral density (CSD) function, spectral density, degree of coherence and root-mean-square (r.m.s) beam width are derived with the help of the Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Based on our elaborated formulae, the influences of the initial beam parameters and the strength of turbulence on the behavior of the considered beam are numerically analyzed. It is shown that, by changing the source coherence width, the partially coherent BGSMB takes different shapes. For high source coherence width, the spectral density takes an elliptical shape, upon propagation distances; when the source coherence width decreasing the beam takes a well-like profile. If the source coherence width is small, the beam evolves into an dark hollow at short propagation distance. Also, our main found results, in the case of odd mode, the beam splits into two beams spot during its propagation. Compared with Gaussian Schell-model beam (GSMB), it has higher spreads and less influenced by the strength of turbulence if the source coherence width is lower. Consequently, this result will be useful for enhances the system performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-022-03743-3</doi><orcidid>https://orcid.org/0000-0003-2735-3108</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2022, Vol.54 (6), Article 332
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2663485527
source Springer Nature
subjects Characterization and Evaluation of Materials
Coherence
Computer Communication Networks
Density
Distribution functions
Electrical Engineering
Gaussian beams (optics)
Jet engines
Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Propagation
Turbulence
Turbulent jets
Wigner distribution
title Propagation of Bessel-Gaussian Shell-model beam through a jet engine exhaust turbulence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20Bessel-Gaussian%20Shell-model%20beam%20through%20a%20jet%20engine%20exhaust%20turbulence&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Nabil,%20H.&rft.date=2022&rft.volume=54&rft.issue=6&rft.artnum=332&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-022-03743-3&rft_dat=%3Cproquest_cross%3E2663485527%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1643-d9c184edd7fff51d5399806cf7aad9c816a70c31bc224b811ffa24b0f77a47623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2663485527&rft_id=info:pmid/&rfr_iscdi=true