Loading…
In-process impulse response of milling to identify stability properties by signal processing
In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with t...
Saved in:
Published in: | Journal of sound and vibration 2022-06, Vol.527, p.116849, Article 116849 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3 |
container_end_page | |
container_issue | |
container_start_page | 116849 |
container_title | Journal of sound and vibration |
container_volume | 527 |
creator | Kiss, Adam K. Hajdu, David Bachrathy, Daniel Stepan, Gabor Dombovari, Zoltan |
description | In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests.
•Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts. |
doi_str_mv | 10.1016/j.jsv.2022.116849 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663523092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X22000955</els_id><sourcerecordid>2663523092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz60zaZsmeJLFPwsLXhQ8CKFNkyWl29aku7Df3izds6cZZub35vEIuUdIEZA_tmkbDikDxlJELnJ5QRYIskhEwcUlWUDcJDmH72tyE0ILADLP8gX5WffJ6AdtQqBuN-67YKg3YRz62AyW7lzXuX5Lp4G6xvSTs0capqp2nZuONJKj8ZMzgdZx7rZ91dGzXKRuyZWtouLduS7J1-vL5-o92Xy8rVfPm0RnXEyJ1aUVtpSYMwEoc0QEYW0JaLkBWUMGRjYllLJGrHiBnJeiFkIwhrzQOluSh1k3vv7dmzCpdtj76CUoxnlWsAwki1c4X2k_hOCNVaN3u8ofFYI6hahaFUNUpxDVHGJknmbGRPsHZ7wK2plem8Z5oyfVDO4f-g9IYnoV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663523092</pqid></control><display><type>article</type><title>In-process impulse response of milling to identify stability properties by signal processing</title><source>ScienceDirect Freedom Collection</source><creator>Kiss, Adam K. ; Hajdu, David ; Bachrathy, Daniel ; Stepan, Gabor ; Dombovari, Zoltan</creator><creatorcontrib>Kiss, Adam K. ; Hajdu, David ; Bachrathy, Daniel ; Stepan, Gabor ; Dombovari, Zoltan</creatorcontrib><description>In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests.
•Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2022.116849</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Chatter ; Chatter detection ; Differential equations ; Dynamic stability ; Dynamical systems ; Floquet multiplier ; Impulse response ; In-process impulse response ; Laboratory tests ; Milling ; Milling (machining) ; Multipliers ; Numerical analysis ; Parameters ; Signal processing ; Stability ; Stability analysis ; Systems stability</subject><ispartof>Journal of sound and vibration, 2022-06, Vol.527, p.116849, Article 116849</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jun 9, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</citedby><cites>FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</cites><orcidid>0000-0003-0692-2906 ; 0000-0002-7074-4553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kiss, Adam K.</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Bachrathy, Daniel</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Dombovari, Zoltan</creatorcontrib><title>In-process impulse response of milling to identify stability properties by signal processing</title><title>Journal of sound and vibration</title><description>In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests.
•Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts.</description><subject>Chatter</subject><subject>Chatter detection</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Floquet multiplier</subject><subject>Impulse response</subject><subject>In-process impulse response</subject><subject>Laboratory tests</subject><subject>Milling</subject><subject>Milling (machining)</subject><subject>Multipliers</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Signal processing</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Systems stability</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz60zaZsmeJLFPwsLXhQ8CKFNkyWl29aku7Df3izds6cZZub35vEIuUdIEZA_tmkbDikDxlJELnJ5QRYIskhEwcUlWUDcJDmH72tyE0ILADLP8gX5WffJ6AdtQqBuN-67YKg3YRz62AyW7lzXuX5Lp4G6xvSTs0capqp2nZuONJKj8ZMzgdZx7rZ91dGzXKRuyZWtouLduS7J1-vL5-o92Xy8rVfPm0RnXEyJ1aUVtpSYMwEoc0QEYW0JaLkBWUMGRjYllLJGrHiBnJeiFkIwhrzQOluSh1k3vv7dmzCpdtj76CUoxnlWsAwki1c4X2k_hOCNVaN3u8ofFYI6hahaFUNUpxDVHGJknmbGRPsHZ7wK2plem8Z5oyfVDO4f-g9IYnoV</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>Kiss, Adam K.</creator><creator>Hajdu, David</creator><creator>Bachrathy, Daniel</creator><creator>Stepan, Gabor</creator><creator>Dombovari, Zoltan</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0692-2906</orcidid><orcidid>https://orcid.org/0000-0002-7074-4553</orcidid></search><sort><creationdate>20220609</creationdate><title>In-process impulse response of milling to identify stability properties by signal processing</title><author>Kiss, Adam K. ; Hajdu, David ; Bachrathy, Daniel ; Stepan, Gabor ; Dombovari, Zoltan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chatter</topic><topic>Chatter detection</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Floquet multiplier</topic><topic>Impulse response</topic><topic>In-process impulse response</topic><topic>Laboratory tests</topic><topic>Milling</topic><topic>Milling (machining)</topic><topic>Multipliers</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Signal processing</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, Adam K.</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Bachrathy, Daniel</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Dombovari, Zoltan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, Adam K.</au><au>Hajdu, David</au><au>Bachrathy, Daniel</au><au>Stepan, Gabor</au><au>Dombovari, Zoltan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-process impulse response of milling to identify stability properties by signal processing</atitle><jtitle>Journal of sound and vibration</jtitle><date>2022-06-09</date><risdate>2022</risdate><volume>527</volume><spage>116849</spage><pages>116849-</pages><artnum>116849</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests.
•Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2022.116849</doi><orcidid>https://orcid.org/0000-0003-0692-2906</orcidid><orcidid>https://orcid.org/0000-0002-7074-4553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2022-06, Vol.527, p.116849, Article 116849 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2663523092 |
source | ScienceDirect Freedom Collection |
subjects | Chatter Chatter detection Differential equations Dynamic stability Dynamical systems Floquet multiplier Impulse response In-process impulse response Laboratory tests Milling Milling (machining) Multipliers Numerical analysis Parameters Signal processing Stability Stability analysis Systems stability |
title | In-process impulse response of milling to identify stability properties by signal processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-process%20impulse%20response%20of%20milling%20to%20identify%20stability%20properties%20by%20signal%20processing&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Kiss,%20Adam%20K.&rft.date=2022-06-09&rft.volume=527&rft.spage=116849&rft.pages=116849-&rft.artnum=116849&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2022.116849&rft_dat=%3Cproquest_cross%3E2663523092%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2663523092&rft_id=info:pmid/&rfr_iscdi=true |