Loading…

In-process impulse response of milling to identify stability properties by signal processing

In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2022-06, Vol.527, p.116849, Article 116849
Main Authors: Kiss, Adam K., Hajdu, David, Bachrathy, Daniel, Stepan, Gabor, Dombovari, Zoltan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3
cites cdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3
container_end_page
container_issue
container_start_page 116849
container_title Journal of sound and vibration
container_volume 527
creator Kiss, Adam K.
Hajdu, David
Bachrathy, Daniel
Stepan, Gabor
Dombovari, Zoltan
description In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests. •Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts.
doi_str_mv 10.1016/j.jsv.2022.116849
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663523092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X22000955</els_id><sourcerecordid>2663523092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz60zaZsmeJLFPwsLXhQ8CKFNkyWl29aku7Df3izds6cZZub35vEIuUdIEZA_tmkbDikDxlJELnJ5QRYIskhEwcUlWUDcJDmH72tyE0ILADLP8gX5WffJ6AdtQqBuN-67YKg3YRz62AyW7lzXuX5Lp4G6xvSTs0capqp2nZuONJKj8ZMzgdZx7rZ91dGzXKRuyZWtouLduS7J1-vL5-o92Xy8rVfPm0RnXEyJ1aUVtpSYMwEoc0QEYW0JaLkBWUMGRjYllLJGrHiBnJeiFkIwhrzQOluSh1k3vv7dmzCpdtj76CUoxnlWsAwki1c4X2k_hOCNVaN3u8ofFYI6hahaFUNUpxDVHGJknmbGRPsHZ7wK2plem8Z5oyfVDO4f-g9IYnoV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663523092</pqid></control><display><type>article</type><title>In-process impulse response of milling to identify stability properties by signal processing</title><source>ScienceDirect Freedom Collection</source><creator>Kiss, Adam K. ; Hajdu, David ; Bachrathy, Daniel ; Stepan, Gabor ; Dombovari, Zoltan</creator><creatorcontrib>Kiss, Adam K. ; Hajdu, David ; Bachrathy, Daniel ; Stepan, Gabor ; Dombovari, Zoltan</creatorcontrib><description>In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests. •Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2022.116849</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Chatter ; Chatter detection ; Differential equations ; Dynamic stability ; Dynamical systems ; Floquet multiplier ; Impulse response ; In-process impulse response ; Laboratory tests ; Milling ; Milling (machining) ; Multipliers ; Numerical analysis ; Parameters ; Signal processing ; Stability ; Stability analysis ; Systems stability</subject><ispartof>Journal of sound and vibration, 2022-06, Vol.527, p.116849, Article 116849</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jun 9, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</citedby><cites>FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</cites><orcidid>0000-0003-0692-2906 ; 0000-0002-7074-4553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kiss, Adam K.</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Bachrathy, Daniel</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Dombovari, Zoltan</creatorcontrib><title>In-process impulse response of milling to identify stability properties by signal processing</title><title>Journal of sound and vibration</title><description>In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests. •Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts.</description><subject>Chatter</subject><subject>Chatter detection</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Floquet multiplier</subject><subject>Impulse response</subject><subject>In-process impulse response</subject><subject>Laboratory tests</subject><subject>Milling</subject><subject>Milling (machining)</subject><subject>Multipliers</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Signal processing</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Systems stability</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz60zaZsmeJLFPwsLXhQ8CKFNkyWl29aku7Df3izds6cZZub35vEIuUdIEZA_tmkbDikDxlJELnJ5QRYIskhEwcUlWUDcJDmH72tyE0ILADLP8gX5WffJ6AdtQqBuN-67YKg3YRz62AyW7lzXuX5Lp4G6xvSTs0capqp2nZuONJKj8ZMzgdZx7rZ91dGzXKRuyZWtouLduS7J1-vL5-o92Xy8rVfPm0RnXEyJ1aUVtpSYMwEoc0QEYW0JaLkBWUMGRjYllLJGrHiBnJeiFkIwhrzQOluSh1k3vv7dmzCpdtj76CUoxnlWsAwki1c4X2k_hOCNVaN3u8ofFYI6hahaFUNUpxDVHGJknmbGRPsHZ7wK2plem8Z5oyfVDO4f-g9IYnoV</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>Kiss, Adam K.</creator><creator>Hajdu, David</creator><creator>Bachrathy, Daniel</creator><creator>Stepan, Gabor</creator><creator>Dombovari, Zoltan</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0692-2906</orcidid><orcidid>https://orcid.org/0000-0002-7074-4553</orcidid></search><sort><creationdate>20220609</creationdate><title>In-process impulse response of milling to identify stability properties by signal processing</title><author>Kiss, Adam K. ; Hajdu, David ; Bachrathy, Daniel ; Stepan, Gabor ; Dombovari, Zoltan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chatter</topic><topic>Chatter detection</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Floquet multiplier</topic><topic>Impulse response</topic><topic>In-process impulse response</topic><topic>Laboratory tests</topic><topic>Milling</topic><topic>Milling (machining)</topic><topic>Multipliers</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Signal processing</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, Adam K.</creatorcontrib><creatorcontrib>Hajdu, David</creatorcontrib><creatorcontrib>Bachrathy, Daniel</creatorcontrib><creatorcontrib>Stepan, Gabor</creatorcontrib><creatorcontrib>Dombovari, Zoltan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, Adam K.</au><au>Hajdu, David</au><au>Bachrathy, Daniel</au><au>Stepan, Gabor</au><au>Dombovari, Zoltan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-process impulse response of milling to identify stability properties by signal processing</atitle><jtitle>Journal of sound and vibration</jtitle><date>2022-06-09</date><risdate>2022</risdate><volume>527</volume><spage>116849</spage><pages>116849-</pages><artnum>116849</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>In this work we present a quantitative measurement-based method to describe the stability behaviour of a periodic dynamical system. In-process response for impulse during milling is analysed to provide operational stability prediction. The proposed method combines chatter detection techniques with the theory of time-periodic delay differential equations applied for general milling operations. Signal processing based on dynamic modal decomposition approach not only presents qualitative properties (like stability/instability) but also quantifies a measure of stability through the determination of the Floquet multipliers. The corresponding monodromy operator of the milling process is approximated from the measured system’s response during machining operation. By changing the technological parameters, the variation of the modulus of the Floquet multipliers can be monitored. The stability limit can precisely be interpolated with the unitary multiplier; furthermore, the stability limit can be extrapolated while the manufacturing parameters remain in the chatter-free region. The presented approach is validated by numerical results and laboratory tests. •Measurement-based method to quantify stability of milling operation.•In-process impulse response is analysed to provide operational stability prediction.•It combines chatter detection techniques with the theory of time-periodic systems.•Extrapolation of stability limit opens ways for efficient cutting parameter optimization.•Results are supported by theoretical, numerical and experimental parts.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2022.116849</doi><orcidid>https://orcid.org/0000-0003-0692-2906</orcidid><orcidid>https://orcid.org/0000-0002-7074-4553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2022-06, Vol.527, p.116849, Article 116849
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2663523092
source ScienceDirect Freedom Collection
subjects Chatter
Chatter detection
Differential equations
Dynamic stability
Dynamical systems
Floquet multiplier
Impulse response
In-process impulse response
Laboratory tests
Milling
Milling (machining)
Multipliers
Numerical analysis
Parameters
Signal processing
Stability
Stability analysis
Systems stability
title In-process impulse response of milling to identify stability properties by signal processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-process%20impulse%20response%20of%20milling%20to%20identify%20stability%20properties%20by%20signal%20processing&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Kiss,%20Adam%20K.&rft.date=2022-06-09&rft.volume=527&rft.spage=116849&rft.pages=116849-&rft.artnum=116849&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2022.116849&rft_dat=%3Cproquest_cross%3E2663523092%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-fc7f8f791428019411108ff701f6e09b030e9d7079b11a6516678b88822165cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2663523092&rft_id=info:pmid/&rfr_iscdi=true