Loading…

A joint distribution framework to improve presence‐only species distribution models by exploiting opportunistic surveys

Aim The availability of data related to species occurrences has favoured the development of species distribution models using only observations of presence. These data are intrinsically biased by the sampling effort. Presence‐only (PO) species distribution models (SDM) typically account for this eff...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biogeography 2022-06, Vol.49 (6), p.1176-1192
Main Authors: Escamilla Molgora, Juan M., Sedda, Luigi, Diggle, Peter, Atkinson, Peter M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3325-e2b2276c40ebfde5d70bf9f868d7109c67b6b6e58a315f895a2cfb27b24b2c193
cites cdi_FETCH-LOGICAL-c3325-e2b2276c40ebfde5d70bf9f868d7109c67b6b6e58a315f895a2cfb27b24b2c193
container_end_page 1192
container_issue 6
container_start_page 1176
container_title Journal of biogeography
container_volume 49
creator Escamilla Molgora, Juan M.
Sedda, Luigi
Diggle, Peter
Atkinson, Peter M.
description Aim The availability of data related to species occurrences has favoured the development of species distribution models using only observations of presence. These data are intrinsically biased by the sampling effort. Presence‐only (PO) species distribution models (SDM) typically account for this effect by introducing additional data considered to be related with the sampling. This approach, however, does not allow the characterisation of the sampling effort and hinders the interpretation of the model. Here, we propose a Bayesian framework for PO SDMs that can explicitly model the sampling effect. Location Mexico. Taxon Pines, flycatchers (family Tyranidae), birds and plants. Methods The framework defines a bivariate process separable into ecological and sampling effort processes. PO data are conceived of incomplete observations where some presences have been filtered out. A choosing principle is used to separate out presences, missing data and absences relative to the species of interest and the sampling observations. The framework provides three modelling alternatives to account for a spatial autocorrelation structure: independent latent variables (model I); common latent spatial random effect (model II) and correlated latent spatial random effects (model III). The framework was compared against the Maximum Entropy (MaxEnt) algorithm in two case studies: one for the prediction of pines and another for the prediction of flycatchers. Results In both case studies, at least one of the proposed models achieved higher predictive accuracy than MaxEnt. The model III fit best when the sampling effort was informative, while model II was more suitable in cases with a high proportion of non‐sampled sites. Main Conclusions Our approach provides a flexible framework for PO SDMs aided by a sampling effort process informed by the accumulated observations of independent and heterogeneous surveys. For the two case studies, the framework provided a model with a higher predictive accuracy than an optimised version of MaxEnt. Resumen Objetivo La disponibilidad de datos relacionados a la ocurrencia de especies ha favorecido el desarrollo de modelos de distribución de especies que solo usan observaciones de presencia. Estos datos están intrínsicamente sesgados por el esfuerzo de muestreo. Como consecuencia, los modelos de distribución de especies de solo presencia típicamente modelan este efecto introduciendo datos adicionales relacionados con un esfuerzo de muestreo genérico.
doi_str_mv 10.1111/jbi.14365
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2663859353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663859353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3325-e2b2276c40ebfde5d70bf9f868d7109c67b6b6e58a315f895a2cfb27b24b2c193</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjSOnbsJGOp-CmqxAKzFTs3yCGJg520ZOMReEaehEBYGLjLt5zvXt2D0HlIFuE4y1KZRRgxwQ_QLBwjoCJND9GMMMIDQmNyjE68LwkhKWfRDA0rXFrTdDg3vnNG9Z2xDS5cVsPeuhfcWWzq1tkd4NaBh0bD5_uHbaoB-xa0Af-3WdscKo_VgOGtrazpTPOMbdta1_XNCBqNfe92MPhTdFRklYez35yjp5vrx_VdsH243axX20AzRnkAVFEaCx0RUEUOPI-JKtIiEUkehyTVIlZCCeBJxkJeJCnPqC4UjRWNFNVhyuboYto7fvHag-9kaXvXjCclFYIlPGWcjdTlRGlnvXdQyNaZOnODDIn8NitHs_LH7MguJ3ZvKhj-B-X91WZqfAH8p38W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663859353</pqid></control><display><type>article</type><title>A joint distribution framework to improve presence‐only species distribution models by exploiting opportunistic surveys</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Escamilla Molgora, Juan M. ; Sedda, Luigi ; Diggle, Peter ; Atkinson, Peter M.</creator><creatorcontrib>Escamilla Molgora, Juan M. ; Sedda, Luigi ; Diggle, Peter ; Atkinson, Peter M.</creatorcontrib><description>Aim The availability of data related to species occurrences has favoured the development of species distribution models using only observations of presence. These data are intrinsically biased by the sampling effort. Presence‐only (PO) species distribution models (SDM) typically account for this effect by introducing additional data considered to be related with the sampling. This approach, however, does not allow the characterisation of the sampling effort and hinders the interpretation of the model. Here, we propose a Bayesian framework for PO SDMs that can explicitly model the sampling effect. Location Mexico. Taxon Pines, flycatchers (family Tyranidae), birds and plants. Methods The framework defines a bivariate process separable into ecological and sampling effort processes. PO data are conceived of incomplete observations where some presences have been filtered out. A choosing principle is used to separate out presences, missing data and absences relative to the species of interest and the sampling observations. The framework provides three modelling alternatives to account for a spatial autocorrelation structure: independent latent variables (model I); common latent spatial random effect (model II) and correlated latent spatial random effects (model III). The framework was compared against the Maximum Entropy (MaxEnt) algorithm in two case studies: one for the prediction of pines and another for the prediction of flycatchers. Results In both case studies, at least one of the proposed models achieved higher predictive accuracy than MaxEnt. The model III fit best when the sampling effort was informative, while model II was more suitable in cases with a high proportion of non‐sampled sites. Main Conclusions Our approach provides a flexible framework for PO SDMs aided by a sampling effort process informed by the accumulated observations of independent and heterogeneous surveys. For the two case studies, the framework provided a model with a higher predictive accuracy than an optimised version of MaxEnt. Resumen Objetivo La disponibilidad de datos relacionados a la ocurrencia de especies ha favorecido el desarrollo de modelos de distribución de especies que solo usan observaciones de presencia. Estos datos están intrínsicamente sesgados por el esfuerzo de muestreo. Como consecuencia, los modelos de distribución de especies de solo presencia típicamente modelan este efecto introduciendo datos adicionales relacionados con un esfuerzo de muestreo genérico. Sin embargo, esta metodología no permite modelar el esfuerzo de muestro explícitamente, dificultando la interpretación del modelo. En este trabajo proponemos un marco de trabajo bayesiano para modelos de distribución de especie de solo presencia que pueden modelar explícitamente el esfuerzo de muestreo. Ubicación México. Taxa pinos, tiránidos, aves y plantas. Métodos El marco de trabajo define un proceso bivariado separable en dos procesos, uno ecológico y otro para el esfuerzo de muestreo. Los datos de solo presencia se consideran como observaciones incompletas donde algunos datos de presencia han sido filtrados. Un principio de selección es usado para clasificar observaciones entre presencias, datos faltantes y ausencias relativas a la especie de interés y muestreo. El marco brinda tres alternativas para modelar la estructura de correlación espacial: efectos aleatorios espaciales independientes (modelo I), efecto aleatorio espacial común (modelo II) y efectos aleatorios espaciales correlacionados (modelo III). El marco fue comparado contra el algoritmo de máxima entropía usando dos casos de estudio: uno para predecir pinos y otro para predecir presencia de tiránidos. Resultados En los dos casos de estudio al menos uno de los modelos propuestos obtuvo una exactitud predictiva mayor que MaxEnt. El modelo III obtuvo un ajuste óptimo cuando el esfuerzo de muestreo fue informativo, mientras que el modelo II resultó ser más adecuado en casos con una alta proporción de sitios no muestreados (datos faltantes). Conclusiones principales Proponemos un marco de trabajo flexible para modelos de distribución de especies basados en datos de solo presencia ayudado por un proceso de esfuerzo de muestreo informado por observaciones independientes de estudios de campo. Para los dos casos de estudio, el marco obtuvo mayores exactitudes predictivas que el modelo más optimizado de MaxEnt.</description><identifier>ISSN: 0305-0270</identifier><identifier>EISSN: 1365-2699</identifier><identifier>DOI: 10.1111/jbi.14365</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>aggregated areal data ; Algorithms ; Bayesian analysis ; Bivariate analysis ; Case studies ; conditional autoregressive models ; Entropy ; Geographical distribution ; Independent variables ; Mathematical models ; Maximum entropy ; maximum entropy benchmark ; Missing data ; presence‐only data ; Sampling ; sampling bias ; sampling effort ; Species ; species distribution models ; Taxa</subject><ispartof>Journal of biogeography, 2022-06, Vol.49 (6), p.1176-1192</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3325-e2b2276c40ebfde5d70bf9f868d7109c67b6b6e58a315f895a2cfb27b24b2c193</citedby><cites>FETCH-LOGICAL-c3325-e2b2276c40ebfde5d70bf9f868d7109c67b6b6e58a315f895a2cfb27b24b2c193</cites><orcidid>0000-0002-9271-6596 ; 0000-0003-3521-5020 ; 0000-0002-5489-6880 ; 0000-0002-3682-9828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Escamilla Molgora, Juan M.</creatorcontrib><creatorcontrib>Sedda, Luigi</creatorcontrib><creatorcontrib>Diggle, Peter</creatorcontrib><creatorcontrib>Atkinson, Peter M.</creatorcontrib><title>A joint distribution framework to improve presence‐only species distribution models by exploiting opportunistic surveys</title><title>Journal of biogeography</title><description>Aim The availability of data related to species occurrences has favoured the development of species distribution models using only observations of presence. These data are intrinsically biased by the sampling effort. Presence‐only (PO) species distribution models (SDM) typically account for this effect by introducing additional data considered to be related with the sampling. This approach, however, does not allow the characterisation of the sampling effort and hinders the interpretation of the model. Here, we propose a Bayesian framework for PO SDMs that can explicitly model the sampling effect. Location Mexico. Taxon Pines, flycatchers (family Tyranidae), birds and plants. Methods The framework defines a bivariate process separable into ecological and sampling effort processes. PO data are conceived of incomplete observations where some presences have been filtered out. A choosing principle is used to separate out presences, missing data and absences relative to the species of interest and the sampling observations. The framework provides three modelling alternatives to account for a spatial autocorrelation structure: independent latent variables (model I); common latent spatial random effect (model II) and correlated latent spatial random effects (model III). The framework was compared against the Maximum Entropy (MaxEnt) algorithm in two case studies: one for the prediction of pines and another for the prediction of flycatchers. Results In both case studies, at least one of the proposed models achieved higher predictive accuracy than MaxEnt. The model III fit best when the sampling effort was informative, while model II was more suitable in cases with a high proportion of non‐sampled sites. Main Conclusions Our approach provides a flexible framework for PO SDMs aided by a sampling effort process informed by the accumulated observations of independent and heterogeneous surveys. For the two case studies, the framework provided a model with a higher predictive accuracy than an optimised version of MaxEnt. Resumen Objetivo La disponibilidad de datos relacionados a la ocurrencia de especies ha favorecido el desarrollo de modelos de distribución de especies que solo usan observaciones de presencia. Estos datos están intrínsicamente sesgados por el esfuerzo de muestreo. Como consecuencia, los modelos de distribución de especies de solo presencia típicamente modelan este efecto introduciendo datos adicionales relacionados con un esfuerzo de muestreo genérico. Sin embargo, esta metodología no permite modelar el esfuerzo de muestro explícitamente, dificultando la interpretación del modelo. En este trabajo proponemos un marco de trabajo bayesiano para modelos de distribución de especie de solo presencia que pueden modelar explícitamente el esfuerzo de muestreo. Ubicación México. Taxa pinos, tiránidos, aves y plantas. Métodos El marco de trabajo define un proceso bivariado separable en dos procesos, uno ecológico y otro para el esfuerzo de muestreo. Los datos de solo presencia se consideran como observaciones incompletas donde algunos datos de presencia han sido filtrados. Un principio de selección es usado para clasificar observaciones entre presencias, datos faltantes y ausencias relativas a la especie de interés y muestreo. El marco brinda tres alternativas para modelar la estructura de correlación espacial: efectos aleatorios espaciales independientes (modelo I), efecto aleatorio espacial común (modelo II) y efectos aleatorios espaciales correlacionados (modelo III). El marco fue comparado contra el algoritmo de máxima entropía usando dos casos de estudio: uno para predecir pinos y otro para predecir presencia de tiránidos. Resultados En los dos casos de estudio al menos uno de los modelos propuestos obtuvo una exactitud predictiva mayor que MaxEnt. El modelo III obtuvo un ajuste óptimo cuando el esfuerzo de muestreo fue informativo, mientras que el modelo II resultó ser más adecuado en casos con una alta proporción de sitios no muestreados (datos faltantes). Conclusiones principales Proponemos un marco de trabajo flexible para modelos de distribución de especies basados en datos de solo presencia ayudado por un proceso de esfuerzo de muestreo informado por observaciones independientes de estudios de campo. Para los dos casos de estudio, el marco obtuvo mayores exactitudes predictivas que el modelo más optimizado de MaxEnt.</description><subject>aggregated areal data</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bivariate analysis</subject><subject>Case studies</subject><subject>conditional autoregressive models</subject><subject>Entropy</subject><subject>Geographical distribution</subject><subject>Independent variables</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>maximum entropy benchmark</subject><subject>Missing data</subject><subject>presence‐only data</subject><subject>Sampling</subject><subject>sampling bias</subject><subject>sampling effort</subject><subject>Species</subject><subject>species distribution models</subject><subject>Taxa</subject><issn>0305-0270</issn><issn>1365-2699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjSOnbsJGOp-CmqxAKzFTs3yCGJg520ZOMReEaehEBYGLjLt5zvXt2D0HlIFuE4y1KZRRgxwQ_QLBwjoCJND9GMMMIDQmNyjE68LwkhKWfRDA0rXFrTdDg3vnNG9Z2xDS5cVsPeuhfcWWzq1tkd4NaBh0bD5_uHbaoB-xa0Af-3WdscKo_VgOGtrazpTPOMbdta1_XNCBqNfe92MPhTdFRklYez35yjp5vrx_VdsH243axX20AzRnkAVFEaCx0RUEUOPI-JKtIiEUkehyTVIlZCCeBJxkJeJCnPqC4UjRWNFNVhyuboYto7fvHag-9kaXvXjCclFYIlPGWcjdTlRGlnvXdQyNaZOnODDIn8NitHs_LH7MguJ3ZvKhj-B-X91WZqfAH8p38W</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Escamilla Molgora, Juan M.</creator><creator>Sedda, Luigi</creator><creator>Diggle, Peter</creator><creator>Atkinson, Peter M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9271-6596</orcidid><orcidid>https://orcid.org/0000-0003-3521-5020</orcidid><orcidid>https://orcid.org/0000-0002-5489-6880</orcidid><orcidid>https://orcid.org/0000-0002-3682-9828</orcidid></search><sort><creationdate>202206</creationdate><title>A joint distribution framework to improve presence‐only species distribution models by exploiting opportunistic surveys</title><author>Escamilla Molgora, Juan M. ; Sedda, Luigi ; Diggle, Peter ; Atkinson, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3325-e2b2276c40ebfde5d70bf9f868d7109c67b6b6e58a315f895a2cfb27b24b2c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aggregated areal data</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bivariate analysis</topic><topic>Case studies</topic><topic>conditional autoregressive models</topic><topic>Entropy</topic><topic>Geographical distribution</topic><topic>Independent variables</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>maximum entropy benchmark</topic><topic>Missing data</topic><topic>presence‐only data</topic><topic>Sampling</topic><topic>sampling bias</topic><topic>sampling effort</topic><topic>Species</topic><topic>species distribution models</topic><topic>Taxa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escamilla Molgora, Juan M.</creatorcontrib><creatorcontrib>Sedda, Luigi</creatorcontrib><creatorcontrib>Diggle, Peter</creatorcontrib><creatorcontrib>Atkinson, Peter M.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escamilla Molgora, Juan M.</au><au>Sedda, Luigi</au><au>Diggle, Peter</au><au>Atkinson, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A joint distribution framework to improve presence‐only species distribution models by exploiting opportunistic surveys</atitle><jtitle>Journal of biogeography</jtitle><date>2022-06</date><risdate>2022</risdate><volume>49</volume><issue>6</issue><spage>1176</spage><epage>1192</epage><pages>1176-1192</pages><issn>0305-0270</issn><eissn>1365-2699</eissn><abstract>Aim The availability of data related to species occurrences has favoured the development of species distribution models using only observations of presence. These data are intrinsically biased by the sampling effort. Presence‐only (PO) species distribution models (SDM) typically account for this effect by introducing additional data considered to be related with the sampling. This approach, however, does not allow the characterisation of the sampling effort and hinders the interpretation of the model. Here, we propose a Bayesian framework for PO SDMs that can explicitly model the sampling effect. Location Mexico. Taxon Pines, flycatchers (family Tyranidae), birds and plants. Methods The framework defines a bivariate process separable into ecological and sampling effort processes. PO data are conceived of incomplete observations where some presences have been filtered out. A choosing principle is used to separate out presences, missing data and absences relative to the species of interest and the sampling observations. The framework provides three modelling alternatives to account for a spatial autocorrelation structure: independent latent variables (model I); common latent spatial random effect (model II) and correlated latent spatial random effects (model III). The framework was compared against the Maximum Entropy (MaxEnt) algorithm in two case studies: one for the prediction of pines and another for the prediction of flycatchers. Results In both case studies, at least one of the proposed models achieved higher predictive accuracy than MaxEnt. The model III fit best when the sampling effort was informative, while model II was more suitable in cases with a high proportion of non‐sampled sites. Main Conclusions Our approach provides a flexible framework for PO SDMs aided by a sampling effort process informed by the accumulated observations of independent and heterogeneous surveys. For the two case studies, the framework provided a model with a higher predictive accuracy than an optimised version of MaxEnt. Resumen Objetivo La disponibilidad de datos relacionados a la ocurrencia de especies ha favorecido el desarrollo de modelos de distribución de especies que solo usan observaciones de presencia. Estos datos están intrínsicamente sesgados por el esfuerzo de muestreo. Como consecuencia, los modelos de distribución de especies de solo presencia típicamente modelan este efecto introduciendo datos adicionales relacionados con un esfuerzo de muestreo genérico. Sin embargo, esta metodología no permite modelar el esfuerzo de muestro explícitamente, dificultando la interpretación del modelo. En este trabajo proponemos un marco de trabajo bayesiano para modelos de distribución de especie de solo presencia que pueden modelar explícitamente el esfuerzo de muestreo. Ubicación México. Taxa pinos, tiránidos, aves y plantas. Métodos El marco de trabajo define un proceso bivariado separable en dos procesos, uno ecológico y otro para el esfuerzo de muestreo. Los datos de solo presencia se consideran como observaciones incompletas donde algunos datos de presencia han sido filtrados. Un principio de selección es usado para clasificar observaciones entre presencias, datos faltantes y ausencias relativas a la especie de interés y muestreo. El marco brinda tres alternativas para modelar la estructura de correlación espacial: efectos aleatorios espaciales independientes (modelo I), efecto aleatorio espacial común (modelo II) y efectos aleatorios espaciales correlacionados (modelo III). El marco fue comparado contra el algoritmo de máxima entropía usando dos casos de estudio: uno para predecir pinos y otro para predecir presencia de tiránidos. Resultados En los dos casos de estudio al menos uno de los modelos propuestos obtuvo una exactitud predictiva mayor que MaxEnt. El modelo III obtuvo un ajuste óptimo cuando el esfuerzo de muestreo fue informativo, mientras que el modelo II resultó ser más adecuado en casos con una alta proporción de sitios no muestreados (datos faltantes). Conclusiones principales Proponemos un marco de trabajo flexible para modelos de distribución de especies basados en datos de solo presencia ayudado por un proceso de esfuerzo de muestreo informado por observaciones independientes de estudios de campo. Para los dos casos de estudio, el marco obtuvo mayores exactitudes predictivas que el modelo más optimizado de MaxEnt.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jbi.14365</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9271-6596</orcidid><orcidid>https://orcid.org/0000-0003-3521-5020</orcidid><orcidid>https://orcid.org/0000-0002-5489-6880</orcidid><orcidid>https://orcid.org/0000-0002-3682-9828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0270
ispartof Journal of biogeography, 2022-06, Vol.49 (6), p.1176-1192
issn 0305-0270
1365-2699
language eng
recordid cdi_proquest_journals_2663859353
source Wiley-Blackwell Read & Publish Collection
subjects aggregated areal data
Algorithms
Bayesian analysis
Bivariate analysis
Case studies
conditional autoregressive models
Entropy
Geographical distribution
Independent variables
Mathematical models
Maximum entropy
maximum entropy benchmark
Missing data
presence‐only data
Sampling
sampling bias
sampling effort
Species
species distribution models
Taxa
title A joint distribution framework to improve presence‐only species distribution models by exploiting opportunistic surveys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20joint%20distribution%20framework%20to%20improve%20presence%E2%80%90only%20species%20distribution%20models%20by%20exploiting%20opportunistic%20surveys&rft.jtitle=Journal%20of%20biogeography&rft.au=Escamilla%20Molgora,%20Juan%20M.&rft.date=2022-06&rft.volume=49&rft.issue=6&rft.spage=1176&rft.epage=1192&rft.pages=1176-1192&rft.issn=0305-0270&rft.eissn=1365-2699&rft_id=info:doi/10.1111/jbi.14365&rft_dat=%3Cproquest_cross%3E2663859353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3325-e2b2276c40ebfde5d70bf9f868d7109c67b6b6e58a315f895a2cfb27b24b2c193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2663859353&rft_id=info:pmid/&rfr_iscdi=true