Loading…

Evolution of Ti–Sn-rutile-supported V2O5–WO3 catalyst during its use in nitric oxide reduction by ammonia

This paper concerns the relation between surface structure of crystalline vanadia-like active species on vanadia–tungsta catalyst and their activity in the selective reduction of NO by ammonia to nitrogen. The investigations were performed for Ti–Sn-rutile-supported isopropoxy-derived catalyst. The...

Full description

Saved in:
Bibliographic Details
Published in:Topics in catalysis 2000-01, Vol.11-12 (1-4), p.131-138
Main Authors: Najbar, M, Mizukami, F, Białas, A, Camra, J, Wesełucha-Birczyńska, A, Izutsu, H, Góra, A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper concerns the relation between surface structure of crystalline vanadia-like active species on vanadia–tungsta catalyst and their activity in the selective reduction of NO by ammonia to nitrogen. The investigations were performed for Ti–Sn-rutile-supported isopropoxy-derived catalyst. The SCR activity and surface species structure were determined for the freshly prepared catalyst, for the catalyst previously used in NO reduction by ammonia (320 ppm NO, 335 ppm NH3 and 2.35 vol% O2) at 573 K as well as for the catalyst previously annealed at 573 K in helium stream containing 2.35 vol% O2. The crystalline islands, exposing main V2O5 surface, with some tungsten atoms substituted for V-ones, were found, with XPS and FT Raman spectroscopy, to be present at the surface of the freshly prepared catalyst. A profound evolution of the active species during the catalyst use at 573 K was observed. Dissociative water adsorption on V5+OW6+ sites is discussed as mainly responsible for the catalyst activity at 473 K and that on both V5+OW6+ and V4+OW6+ sites as determining the activity at 523 K.
ISSN:1022-5528
1572-9028
DOI:10.1023/A:1027299931119