Loading…
Proton conductivity of single-walled carbon nanotubes: A semiempirical study
The possibility of using single-walled carbon nanotubes as materials with proton conductivity is investigated. Two possible mechanisms of migration of a proton over the surface of single-walled carbon nanotubes are proposed. The proton transfer over the outer surface of carbon nanotubes is calculate...
Saved in:
Published in: | Physics of the solid state 2006-04, Vol.48 (4), p.806-811 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The possibility of using single-walled carbon nanotubes as materials with proton conductivity is investigated. Two possible mechanisms of migration of a proton over the surface of single-walled carbon nanotubes are proposed. The proton transfer over the outer surface of carbon nanotubes is calculated at the semiempirical quantum-mechanical level. The surface profiles of the potential energy are constructed and used to calculate the activation energy of proton hopping from one carbon atom to another carbon atom. This activation energy can be useful for determining a temperature dependence of the relative hopping conductivity of a nanotube. |
---|---|
ISSN: | 1063-7834 1090-6460 |
DOI: | 10.1134/S1063783406040305 |