Loading…
Unicycle graphs with maximum generalized topological indices
Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.
Saved in:
Published in: | Journal of mathematical chemistry 2007-08, Vol.42 (2), p.119-124 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343 |
container_end_page | 124 |
container_issue | 2 |
container_start_page | 119 |
container_title | Journal of mathematical chemistry |
container_volume | 42 |
creator | Wang, Hongzhuan Deng, Hanyuan |
description | Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized. |
doi_str_mv | 10.1007/s10910-005-9027-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664474361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664474361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMoWKsP4G5AXEZPJplcwI0Ub1BwY9chk6RtytxMpmj79Ka04Oqcxf_9h_MhdEvggQCIx0RAEcAAFVZQCrw_QxNSiRJLqcQ5mkBZKayEIpfoKqUNACjJ5QQ9Lbpgd7bxxSqaYZ2KnzCui9b8hnbbFivf-WiasPeuGPuhb_pVsKYpQueC9ekaXSxNk_zNaU7R4vXla_aO559vH7PnObYU6IhrwmsJlQIvSC2kp8ZI6YHnnVWsIiCUEFKaGpgrFROM19w5Zzwo4zhldIrujr1D7L-3Po16029jl0_qknOWCcpJTpFjysY-peiXeoihNXGnCeiDJH2UpLMkfZCk95m5PzWblB9bRtPZkP5BqagEoPQPJ59mfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664474361</pqid></control><display><type>article</type><title>Unicycle graphs with maximum generalized topological indices</title><source>Springer Nature</source><creator>Wang, Hongzhuan ; Deng, Hanyuan</creator><creatorcontrib>Wang, Hongzhuan ; Deng, Hanyuan</creatorcontrib><description>Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-005-9027-z</identifier><identifier>CODEN: JMCHEG</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Graphs ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Topology</subject><ispartof>Journal of mathematical chemistry, 2007-08, Vol.42 (2), p.119-124</ispartof><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</citedby><cites>FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18938003$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongzhuan</creatorcontrib><creatorcontrib>Deng, Hanyuan</creatorcontrib><title>Unicycle graphs with maximum generalized topological indices</title><title>Journal of mathematical chemistry</title><description>Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Graphs</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Topology</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEUhoMoWKsP4G5AXEZPJplcwI0Ub1BwY9chk6RtytxMpmj79Ka04Oqcxf_9h_MhdEvggQCIx0RAEcAAFVZQCrw_QxNSiRJLqcQ5mkBZKayEIpfoKqUNACjJ5QQ9Lbpgd7bxxSqaYZ2KnzCui9b8hnbbFivf-WiasPeuGPuhb_pVsKYpQueC9ekaXSxNk_zNaU7R4vXla_aO559vH7PnObYU6IhrwmsJlQIvSC2kp8ZI6YHnnVWsIiCUEFKaGpgrFROM19w5Zzwo4zhldIrujr1D7L-3Po16029jl0_qknOWCcpJTpFjysY-peiXeoihNXGnCeiDJH2UpLMkfZCk95m5PzWblB9bRtPZkP5BqagEoPQPJ59mfQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Wang, Hongzhuan</creator><creator>Deng, Hanyuan</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070801</creationdate><title>Unicycle graphs with maximum generalized topological indices</title><author>Wang, Hongzhuan ; Deng, Hanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Graphs</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongzhuan</creatorcontrib><creatorcontrib>Deng, Hanyuan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongzhuan</au><au>Deng, Hanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unicycle graphs with maximum generalized topological indices</atitle><jtitle>Journal of mathematical chemistry</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>42</volume><issue>2</issue><spage>119</spage><epage>124</epage><pages>119-124</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><coden>JMCHEG</coden><abstract>Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10910-005-9027-z</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2007-08, Vol.42 (2), p.119-124 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_2664474361 |
source | Springer Nature |
subjects | Chemistry Exact sciences and technology General and physical chemistry Graphs Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Topology |
title | Unicycle graphs with maximum generalized topological indices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unicycle%20graphs%20with%20maximum%20generalized%20topological%20indices&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Wang,%20Hongzhuan&rft.date=2007-08-01&rft.volume=42&rft.issue=2&rft.spage=119&rft.epage=124&rft.pages=119-124&rft.issn=0259-9791&rft.eissn=1572-8897&rft.coden=JMCHEG&rft_id=info:doi/10.1007/s10910-005-9027-z&rft_dat=%3Cproquest_cross%3E2664474361%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664474361&rft_id=info:pmid/&rfr_iscdi=true |