Loading…

Unicycle graphs with maximum generalized topological indices

Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.

Saved in:
Bibliographic Details
Published in:Journal of mathematical chemistry 2007-08, Vol.42 (2), p.119-124
Main Authors: Wang, Hongzhuan, Deng, Hanyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343
cites cdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343
container_end_page 124
container_issue 2
container_start_page 119
container_title Journal of mathematical chemistry
container_volume 42
creator Wang, Hongzhuan
Deng, Hanyuan
description Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.
doi_str_mv 10.1007/s10910-005-9027-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2664474361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664474361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMoWKsP4G5AXEZPJplcwI0Ub1BwY9chk6RtytxMpmj79Ka04Oqcxf_9h_MhdEvggQCIx0RAEcAAFVZQCrw_QxNSiRJLqcQ5mkBZKayEIpfoKqUNACjJ5QQ9Lbpgd7bxxSqaYZ2KnzCui9b8hnbbFivf-WiasPeuGPuhb_pVsKYpQueC9ekaXSxNk_zNaU7R4vXla_aO559vH7PnObYU6IhrwmsJlQIvSC2kp8ZI6YHnnVWsIiCUEFKaGpgrFROM19w5Zzwo4zhldIrujr1D7L-3Po16029jl0_qknOWCcpJTpFjysY-peiXeoihNXGnCeiDJH2UpLMkfZCk95m5PzWblB9bRtPZkP5BqagEoPQPJ59mfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664474361</pqid></control><display><type>article</type><title>Unicycle graphs with maximum generalized topological indices</title><source>Springer Nature</source><creator>Wang, Hongzhuan ; Deng, Hanyuan</creator><creatorcontrib>Wang, Hongzhuan ; Deng, Hanyuan</creatorcontrib><description>Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-005-9027-z</identifier><identifier>CODEN: JMCHEG</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Graphs ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Topology</subject><ispartof>Journal of mathematical chemistry, 2007-08, Vol.42 (2), p.119-124</ispartof><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</citedby><cites>FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18938003$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongzhuan</creatorcontrib><creatorcontrib>Deng, Hanyuan</creatorcontrib><title>Unicycle graphs with maximum generalized topological indices</title><title>Journal of mathematical chemistry</title><description>Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Graphs</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Topology</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEUhoMoWKsP4G5AXEZPJplcwI0Ub1BwY9chk6RtytxMpmj79Ka04Oqcxf_9h_MhdEvggQCIx0RAEcAAFVZQCrw_QxNSiRJLqcQ5mkBZKayEIpfoKqUNACjJ5QQ9Lbpgd7bxxSqaYZ2KnzCui9b8hnbbFivf-WiasPeuGPuhb_pVsKYpQueC9ekaXSxNk_zNaU7R4vXla_aO559vH7PnObYU6IhrwmsJlQIvSC2kp8ZI6YHnnVWsIiCUEFKaGpgrFROM19w5Zzwo4zhldIrujr1D7L-3Po16029jl0_qknOWCcpJTpFjysY-peiXeoihNXGnCeiDJH2UpLMkfZCk95m5PzWblB9bRtPZkP5BqagEoPQPJ59mfQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Wang, Hongzhuan</creator><creator>Deng, Hanyuan</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070801</creationdate><title>Unicycle graphs with maximum generalized topological indices</title><author>Wang, Hongzhuan ; Deng, Hanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Graphs</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongzhuan</creatorcontrib><creatorcontrib>Deng, Hanyuan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongzhuan</au><au>Deng, Hanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unicycle graphs with maximum generalized topological indices</atitle><jtitle>Journal of mathematical chemistry</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>42</volume><issue>2</issue><spage>119</spage><epage>124</epage><pages>119-124</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><coden>JMCHEG</coden><abstract>Let G be an unicycle graph and dv the degree of the vertex v. In this paper, we investigate the following topological indices for an unicycle graph , , where m ≥ 2 is an integer. All unicycle graphs with the largest values of the three topological indices are characterized.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10910-005-9027-z</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2007-08, Vol.42 (2), p.119-124
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2664474361
source Springer Nature
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Graphs
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Topology
title Unicycle graphs with maximum generalized topological indices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unicycle%20graphs%20with%20maximum%20generalized%20topological%20indices&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Wang,%20Hongzhuan&rft.date=2007-08-01&rft.volume=42&rft.issue=2&rft.spage=119&rft.epage=124&rft.pages=119-124&rft.issn=0259-9791&rft.eissn=1572-8897&rft.coden=JMCHEG&rft_id=info:doi/10.1007/s10910-005-9027-z&rft_dat=%3Cproquest_cross%3E2664474361%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-b16b80590e71b78e3aa88e06b78454510797788ab04d294746b6dddae09ad6343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664474361&rft_id=info:pmid/&rfr_iscdi=true