Loading…
Impact of iodide ions in the transformation of Cu nanostructures from one-dimensional nanowires to two-dimensional microplates
Controlling the shape of a metal nanostructure allows to control its properties, yet the processes that induce solution-phase anisotropic growth of metal nanostructures are still a mystery. Though the iodide ion is well-known as a shape-directing agent, the study emphasizes the role of alkylamine in...
Saved in:
Published in: | Journal of chemical sciences (Bangalore, India) India), 2022-06, Vol.134 (2), Article 64 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Controlling the shape of a metal nanostructure allows to control its properties, yet the processes that induce solution-phase anisotropic growth of metal nanostructures are still a mystery. Though the iodide ion is well-known as a shape-directing agent, the study emphasizes the role of alkylamine in the shape-shifting of 1D Cu nanowires to 2D Cu nanoplates in conjunction with the iodide source. The role of iodide and Cu precursor sources for the production of 2D microplates is also highlighted in this study.
Graphical abstract
In the presence of alkylamine, iodide ions derived from ionic sources (HI and KI) create 2D microplates, whereas molecular iodine produces wafer-like Cu nanostructures. Cu microplates, on the other hand, cannot be made from CuI in the presence of alkylamine, demonstrating the importance of the precursor's binding strength in the production of Cu microplates. |
---|---|
ISSN: | 0974-3626 0973-7103 |
DOI: | 10.1007/s12039-022-02056-y |