Loading…
Absolute phase effect in ultrafast optical responses of metal nanostructures
We predict that nonlinear ultrafast electron photoemission by strong optical fields and, potentially, other nonlinear optical responses of metal nanostructures significantly depend on the absolute (carrier–envelope) phase of excitation pulses. Strong enhancement of the local optical fields produces...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2007-11, Vol.89 (2), p.247-250 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We predict that nonlinear ultrafast electron photoemission by strong optical fields and, potentially, other nonlinear optical responses of metal nanostructures significantly depend on the absolute (carrier–envelope) phase of excitation pulses. Strong enhancement of the local optical fields produces these responses at excitation intensities lower by order(s) of magnitude than for known systems. Prospective applications include control of ultrafast electron emission and electron injection into nanosystems. A wider class of prospective applications is the determination of the absolute phase of pulses emitted by lasers and atoms, molecules, and condensed matter at relatively low intensities. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-007-4105-7 |