Loading…
Fabrication of stabilized piezoelectric thick film for silicon-based MEMS device
Electrical properties of piezoelectric thick films with controlled microstructure were investigated. In order to enhance the electromechanical properties (e.g. d31, d33) of a thick film by control of its microstructure, a mixed powder, referred to as BNP, consisting of both nano-sized and micro-size...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2007-09, Vol.88 (4), p.627-632 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrical properties of piezoelectric thick films with controlled microstructure were investigated. In order to enhance the electromechanical properties (e.g. d31, d33) of a thick film by control of its microstructure, a mixed powder, referred to as BNP, consisting of both nano-sized and micro-sized piezoelectric particles, was employed as a starting precursor in the film fabrication process. According to a scanning electron microscopy study, it is shown that a BNP thick film exhibits the densest homogeneous microstructures. According to surface area measurements, the BNP thick film was sufficiently densified without an additional infiltration process of Pb(Zr1-xTix)O3 sol for densification. The screen-printed BNP thick film possesses a dielectric constant and a remanent polarization much higher than those of a thick film composed of only micro-sized piezoelectric particles by a factor of more than two. This suggests the potential application of the BNP thick film, in conjunction with a silicon substrate, to a micromachined monolithic PZT thick film device on the silicon substrate. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-007-4025-6 |