Loading…

Development and characterization of La2O3 nanoparticles@snowflake-like Cu2S nanostructure composite modified electrode and application for simultaneous detection of catechol, hydroquinone and resorcinol as an electrochemical sensor

We could successfully fabricate a new composite of La2O3 nanoparticles@snowflake-like Cu2S nanostructure (La2O3 NP@SF-L Cu2S NS composite) for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ra...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2022-06, Vol.416, p.140261, Article 140261
Main Authors: Jahani, Shohreh, Sedighi, Ali, Toolabi, Ali, Foroughi, Mohammad Mehdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We could successfully fabricate a new composite of La2O3 nanoparticles@snowflake-like Cu2S nanostructure (La2O3 NP@SF-L Cu2S NS composite) for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD) were used to characterize the constructed La2O3 NP@SF-L Cu2S NS composites. The presence of HQ, CT and RS was simultaneously detected on the surface of modified La2O3 NP@SF-L Cu2S NS composites because of unique properties such as large surface area, high electrical conductivity and potent catalytic activity, with the appearance of three distinctive peaks. Moreover, differential pulse voltammetric (DPV), chronoamperometry (CHA) and cyclic voltammetric (CV) were also employed to determine the electrocatalytic profile of CT, HQ and RS on electrode modified with the nanocomposite (La2O3 NP@SF-L Cu2S NS/GCE). There was a significant elevation in the HQ, CT and RS oxidation currents when compared to those on both bare and modified electrodes. The peak of the catalytic current was directly variable based on the concentrations of HQ, CT and RS (0.66 to 266.6 μM), respectively. Further, the limit of detection (LOD) was calculated to be 0.056 μM, 0.058 μM and 0.059 μM for all HQ, CT and RS, respectively. Acceptable outcomes were achieved for the applicability of La2O3 NP@SF-L Cu2S NS/GCE in detecting HQ, CT and RS present in real specimens.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2022.140261