Loading…

Evolution of Lifshitz metric anisotropies in Einstein-Proca theory under the Ricci-DeTurck flow

By starting from a Perelman entropy functional and considering the Ricci-DeTurck flow equations we analyze the behaviour of Einstein-Hilbert and Einstein-Proca theories with Lifshitz geometry as functions of a flow parameter. In the former case, we found one consistent fixed point that represents fl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-05
Main Authors: Cartas-Fuentevilla, Roberto, de la Cruz, Manuel, Herrera-Aguilar, Alfredo, Herrera-Mendoza, Jhony A, Higuita-Borja, Daniel F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cartas-Fuentevilla, Roberto
de la Cruz, Manuel
Herrera-Aguilar, Alfredo
Herrera-Mendoza, Jhony A
Higuita-Borja, Daniel F
description By starting from a Perelman entropy functional and considering the Ricci-DeTurck flow equations we analyze the behaviour of Einstein-Hilbert and Einstein-Proca theories with Lifshitz geometry as functions of a flow parameter. In the former case, we found one consistent fixed point that represents flat space-time as the flow parameter tends to infinity. Massive vector fields in the latter theory enrich the system under study and have the same fixed point achieved at the same rate as in the former case. The geometric flow is parametrized by the metric coefficients and represents a change in anisotropy of the geometry towards an isotropic flat space-time as the flow parameter evolves. Indeed, the flow of the Proca fields depends on certain coefficients that vanish when the flow parameter increases, rendering these fields constant. We have been able to write down the evolving Lifshitz metric solution with positive, but otherwise arbitrary, critical exponents relevant to geometries with spatially anisotropic holographic duals. We show that both the scalar curvature and matter contributions to the Ricci-DeTurck flow vanish under the flow at a fixed point consistent with flat space-time geometry. Thus, the behaviour of the scalar curvature always increases, homogenizing the geometry along the flow. Moreover, the theory under study keeps positive-definite but decreasing the entropy functional along the Ricci-DeTurck flow.
doi_str_mv 10.48550/arxiv.2205.07491
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2665375499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665375499</sourcerecordid><originalsourceid>FETCH-LOGICAL-a951-cb6f82c3978f6ee6eecc9d7b2fd64ec5f416f442cc1d37f53a5f2d7b3092b9113</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMgOOZ-gHcBrzuTNx9tLmVOHRQU6X3J0oRlzmQm6fz49VYUDhweDjwHoStKlrwRgtzo9OlPSwAilqTmip6hGTBGq4YDXKBFzntCCMgahGAz1K9P8TAWHwOODrfe5Z0v3_jNluQN1sHnWFI8epuxD3jtQy7Wh-o5RaNx2dmYvvAYBpt-Ab94Y3x1Z7sxmVfsDvHjEp07fch28d9z1N2vu9Vj1T49bFa3baWVoJXZSteAYapunLR2ijFqqLfgBsmtEY5T6TgHY-jAaieYFg6mnREFW0Upm6PrP-0xxffR5tLv45jC9NiDlILVgivFfgBW-Fc6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665375499</pqid></control><display><type>article</type><title>Evolution of Lifshitz metric anisotropies in Einstein-Proca theory under the Ricci-DeTurck flow</title><source>Publicly Available Content Database</source><creator>Cartas-Fuentevilla, Roberto ; de la Cruz, Manuel ; Herrera-Aguilar, Alfredo ; Herrera-Mendoza, Jhony A ; Higuita-Borja, Daniel F</creator><creatorcontrib>Cartas-Fuentevilla, Roberto ; de la Cruz, Manuel ; Herrera-Aguilar, Alfredo ; Herrera-Mendoza, Jhony A ; Higuita-Borja, Daniel F</creatorcontrib><description>By starting from a Perelman entropy functional and considering the Ricci-DeTurck flow equations we analyze the behaviour of Einstein-Hilbert and Einstein-Proca theories with Lifshitz geometry as functions of a flow parameter. In the former case, we found one consistent fixed point that represents flat space-time as the flow parameter tends to infinity. Massive vector fields in the latter theory enrich the system under study and have the same fixed point achieved at the same rate as in the former case. The geometric flow is parametrized by the metric coefficients and represents a change in anisotropy of the geometry towards an isotropic flat space-time as the flow parameter evolves. Indeed, the flow of the Proca fields depends on certain coefficients that vanish when the flow parameter increases, rendering these fields constant. We have been able to write down the evolving Lifshitz metric solution with positive, but otherwise arbitrary, critical exponents relevant to geometries with spatially anisotropic holographic duals. We show that both the scalar curvature and matter contributions to the Ricci-DeTurck flow vanish under the flow at a fixed point consistent with flat space-time geometry. Thus, the behaviour of the scalar curvature always increases, homogenizing the geometry along the flow. Moreover, the theory under study keeps positive-definite but decreasing the entropy functional along the Ricci-DeTurck flow.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2205.07491</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Curvature ; Entropy ; Fields (mathematics) ; Flow equations ; Geometry ; Mathematical analysis ; Parameters ; Relativity ; Spacetime</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2665375499?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Cartas-Fuentevilla, Roberto</creatorcontrib><creatorcontrib>de la Cruz, Manuel</creatorcontrib><creatorcontrib>Herrera-Aguilar, Alfredo</creatorcontrib><creatorcontrib>Herrera-Mendoza, Jhony A</creatorcontrib><creatorcontrib>Higuita-Borja, Daniel F</creatorcontrib><title>Evolution of Lifshitz metric anisotropies in Einstein-Proca theory under the Ricci-DeTurck flow</title><title>arXiv.org</title><description>By starting from a Perelman entropy functional and considering the Ricci-DeTurck flow equations we analyze the behaviour of Einstein-Hilbert and Einstein-Proca theories with Lifshitz geometry as functions of a flow parameter. In the former case, we found one consistent fixed point that represents flat space-time as the flow parameter tends to infinity. Massive vector fields in the latter theory enrich the system under study and have the same fixed point achieved at the same rate as in the former case. The geometric flow is parametrized by the metric coefficients and represents a change in anisotropy of the geometry towards an isotropic flat space-time as the flow parameter evolves. Indeed, the flow of the Proca fields depends on certain coefficients that vanish when the flow parameter increases, rendering these fields constant. We have been able to write down the evolving Lifshitz metric solution with positive, but otherwise arbitrary, critical exponents relevant to geometries with spatially anisotropic holographic duals. We show that both the scalar curvature and matter contributions to the Ricci-DeTurck flow vanish under the flow at a fixed point consistent with flat space-time geometry. Thus, the behaviour of the scalar curvature always increases, homogenizing the geometry along the flow. Moreover, the theory under study keeps positive-definite but decreasing the entropy functional along the Ricci-DeTurck flow.</description><subject>Anisotropy</subject><subject>Curvature</subject><subject>Entropy</subject><subject>Fields (mathematics)</subject><subject>Flow equations</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Relativity</subject><subject>Spacetime</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAYhYMgOOZ-gHcBrzuTNx9tLmVOHRQU6X3J0oRlzmQm6fz49VYUDhweDjwHoStKlrwRgtzo9OlPSwAilqTmip6hGTBGq4YDXKBFzntCCMgahGAz1K9P8TAWHwOODrfe5Z0v3_jNluQN1sHnWFI8epuxD3jtQy7Wh-o5RaNx2dmYvvAYBpt-Ab94Y3x1Z7sxmVfsDvHjEp07fch28d9z1N2vu9Vj1T49bFa3baWVoJXZSteAYapunLR2ijFqqLfgBsmtEY5T6TgHY-jAaieYFg6mnREFW0Upm6PrP-0xxffR5tLv45jC9NiDlILVgivFfgBW-Fc6</recordid><startdate>20220516</startdate><enddate>20220516</enddate><creator>Cartas-Fuentevilla, Roberto</creator><creator>de la Cruz, Manuel</creator><creator>Herrera-Aguilar, Alfredo</creator><creator>Herrera-Mendoza, Jhony A</creator><creator>Higuita-Borja, Daniel F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220516</creationdate><title>Evolution of Lifshitz metric anisotropies in Einstein-Proca theory under the Ricci-DeTurck flow</title><author>Cartas-Fuentevilla, Roberto ; de la Cruz, Manuel ; Herrera-Aguilar, Alfredo ; Herrera-Mendoza, Jhony A ; Higuita-Borja, Daniel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a951-cb6f82c3978f6ee6eecc9d7b2fd64ec5f416f442cc1d37f53a5f2d7b3092b9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Curvature</topic><topic>Entropy</topic><topic>Fields (mathematics)</topic><topic>Flow equations</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Relativity</topic><topic>Spacetime</topic><toplevel>online_resources</toplevel><creatorcontrib>Cartas-Fuentevilla, Roberto</creatorcontrib><creatorcontrib>de la Cruz, Manuel</creatorcontrib><creatorcontrib>Herrera-Aguilar, Alfredo</creatorcontrib><creatorcontrib>Herrera-Mendoza, Jhony A</creatorcontrib><creatorcontrib>Higuita-Borja, Daniel F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartas-Fuentevilla, Roberto</au><au>de la Cruz, Manuel</au><au>Herrera-Aguilar, Alfredo</au><au>Herrera-Mendoza, Jhony A</au><au>Higuita-Borja, Daniel F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Lifshitz metric anisotropies in Einstein-Proca theory under the Ricci-DeTurck flow</atitle><jtitle>arXiv.org</jtitle><date>2022-05-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>By starting from a Perelman entropy functional and considering the Ricci-DeTurck flow equations we analyze the behaviour of Einstein-Hilbert and Einstein-Proca theories with Lifshitz geometry as functions of a flow parameter. In the former case, we found one consistent fixed point that represents flat space-time as the flow parameter tends to infinity. Massive vector fields in the latter theory enrich the system under study and have the same fixed point achieved at the same rate as in the former case. The geometric flow is parametrized by the metric coefficients and represents a change in anisotropy of the geometry towards an isotropic flat space-time as the flow parameter evolves. Indeed, the flow of the Proca fields depends on certain coefficients that vanish when the flow parameter increases, rendering these fields constant. We have been able to write down the evolving Lifshitz metric solution with positive, but otherwise arbitrary, critical exponents relevant to geometries with spatially anisotropic holographic duals. We show that both the scalar curvature and matter contributions to the Ricci-DeTurck flow vanish under the flow at a fixed point consistent with flat space-time geometry. Thus, the behaviour of the scalar curvature always increases, homogenizing the geometry along the flow. Moreover, the theory under study keeps positive-definite but decreasing the entropy functional along the Ricci-DeTurck flow.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2205.07491</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2665375499
source Publicly Available Content Database
subjects Anisotropy
Curvature
Entropy
Fields (mathematics)
Flow equations
Geometry
Mathematical analysis
Parameters
Relativity
Spacetime
title Evolution of Lifshitz metric anisotropies in Einstein-Proca theory under the Ricci-DeTurck flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Lifshitz%20metric%20anisotropies%20in%20Einstein-Proca%20theory%20under%20the%20Ricci-DeTurck%20flow&rft.jtitle=arXiv.org&rft.au=Cartas-Fuentevilla,%20Roberto&rft.date=2022-05-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2205.07491&rft_dat=%3Cproquest%3E2665375499%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a951-cb6f82c3978f6ee6eecc9d7b2fd64ec5f416f442cc1d37f53a5f2d7b3092b9113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665375499&rft_id=info:pmid/&rfr_iscdi=true