Loading…

SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments

Efficiently making adequate citations is becoming more challenging due to the rapidly increasing volume of publications. In practice, citing the appropriate references is a time-consuming and skill-required task. Accordingly, many studies have tried to help by providing citation-oriented support. In...

Full description

Saved in:
Bibliographic Details
Published in:Scientometrics 2022-05, Vol.127 (5), p.2521-2546
Main Authors: Wang, Hei-Chia, Cheng, Jen-Wei, Yang, Che-Tsung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ff9b3ff0f2b8aa50f862bdf268b9814393653699cdfd6e606af296e38dc7aa993
cites cdi_FETCH-LOGICAL-c319t-ff9b3ff0f2b8aa50f862bdf268b9814393653699cdfd6e606af296e38dc7aa993
container_end_page 2546
container_issue 5
container_start_page 2521
container_title Scientometrics
container_volume 127
creator Wang, Hei-Chia
Cheng, Jen-Wei
Yang, Che-Tsung
description Efficiently making adequate citations is becoming more challenging due to the rapidly increasing volume of publications. In practice, citing the appropriate references is a time-consuming and skill-required task. Accordingly, many studies have tried to help by providing citation-oriented support. In this field, citation recommendation is a significant research area because it addresses the problems of required profound skills and information overload. In this paper, we propose a sentence-level citation recommender, SentCite, that can identify the sentences that need links to references and can recommend citations. SentCite employs the convolutional recurrent neural network to extract the citing sentences and recommends citations based on the salient similarity between the sentences among the abstract, full text, and in-link context of the target papers. Unlike some other research in the big data domain, the recommended quality papers in this application are very limited. We proposed undersampling inlink context awareness to avoid overfitting problems. SentCite can recommend the most appropriate papers for the given sentences and outperforms other context-based methods in terms of improvement in mean reciprocal rank (MRR) 31.8%, mean average precision (MAP) 30.1%, and normalized discounted cumulative gain (NDCG) 33.8%.
doi_str_mv 10.1007/s11192-022-04339-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665618464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665618464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ff9b3ff0f2b8aa50f862bdf268b9814393653699cdfd6e606af296e38dc7aa993</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tNnEmyx-wYIH9RzSdlKzpO2aZAX_vdEK3jwMMwzPMwMvQueMXjJKV1eJMaY5obxUJYQm9AAtWK0U4UqyQ7SgTCiimaDH6CSlLS2SoGqB-mcY89pnuMYWpzLD2AIJ8AEBtz7b7KcRR2inYYCxg4gbm6DDZZnfACcbfHFw8oMPNvr8ie0wjT0e9iH7XSgE9EXM6RQdORsSnP32JXq9u31ZP5DN0_3j-mZDWsF0Js7pRjhHHW-UtTV1SvKmc1yqRitWCS1kLaTWbec6CZJK67iWIFTXrqzVWizRxXx3F6f3PaRsttM-juWl4VLWkqlKVoXiM9XGKaUIzuyiH2z8NIya70DNHKgpgZqfQA0tkpilVOCxh_h3-h_rC3C-enc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665618464</pqid></control><display><type>article</type><title>SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Springer Nature</source><creator>Wang, Hei-Chia ; Cheng, Jen-Wei ; Yang, Che-Tsung</creator><creatorcontrib>Wang, Hei-Chia ; Cheng, Jen-Wei ; Yang, Che-Tsung</creatorcontrib><description>Efficiently making adequate citations is becoming more challenging due to the rapidly increasing volume of publications. In practice, citing the appropriate references is a time-consuming and skill-required task. Accordingly, many studies have tried to help by providing citation-oriented support. In this field, citation recommendation is a significant research area because it addresses the problems of required profound skills and information overload. In this paper, we propose a sentence-level citation recommender, SentCite, that can identify the sentences that need links to references and can recommend citations. SentCite employs the convolutional recurrent neural network to extract the citing sentences and recommends citations based on the salient similarity between the sentences among the abstract, full text, and in-link context of the target papers. Unlike some other research in the big data domain, the recommended quality papers in this application are very limited. We proposed undersampling inlink context awareness to avoid overfitting problems. SentCite can recommend the most appropriate papers for the given sentences and outperforms other context-based methods in terms of improvement in mean reciprocal rank (MRR) 31.8%, mean average precision (MAP) 30.1%, and normalized discounted cumulative gain (NDCG) 33.8%.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-022-04339-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Citations ; Computer Science ; Context ; Information Storage and Retrieval ; Library Science ; Neural networks ; Recommender systems ; Recurrent neural networks ; Similarity</subject><ispartof>Scientometrics, 2022-05, Vol.127 (5), p.2521-2546</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2022</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ff9b3ff0f2b8aa50f862bdf268b9814393653699cdfd6e606af296e38dc7aa993</citedby><cites>FETCH-LOGICAL-c319t-ff9b3ff0f2b8aa50f862bdf268b9814393653699cdfd6e606af296e38dc7aa993</cites><orcidid>0000-0002-5790-7506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,34114</link.rule.ids></links><search><creatorcontrib>Wang, Hei-Chia</creatorcontrib><creatorcontrib>Cheng, Jen-Wei</creatorcontrib><creatorcontrib>Yang, Che-Tsung</creatorcontrib><title>SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>Efficiently making adequate citations is becoming more challenging due to the rapidly increasing volume of publications. In practice, citing the appropriate references is a time-consuming and skill-required task. Accordingly, many studies have tried to help by providing citation-oriented support. In this field, citation recommendation is a significant research area because it addresses the problems of required profound skills and information overload. In this paper, we propose a sentence-level citation recommender, SentCite, that can identify the sentences that need links to references and can recommend citations. SentCite employs the convolutional recurrent neural network to extract the citing sentences and recommends citations based on the salient similarity between the sentences among the abstract, full text, and in-link context of the target papers. Unlike some other research in the big data domain, the recommended quality papers in this application are very limited. We proposed undersampling inlink context awareness to avoid overfitting problems. SentCite can recommend the most appropriate papers for the given sentences and outperforms other context-based methods in terms of improvement in mean reciprocal rank (MRR) 31.8%, mean average precision (MAP) 30.1%, and normalized discounted cumulative gain (NDCG) 33.8%.</description><subject>Citations</subject><subject>Computer Science</subject><subject>Context</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Neural networks</subject><subject>Recommender systems</subject><subject>Recurrent neural networks</subject><subject>Similarity</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tNnEmyx-wYIH9RzSdlKzpO2aZAX_vdEK3jwMMwzPMwMvQueMXjJKV1eJMaY5obxUJYQm9AAtWK0U4UqyQ7SgTCiimaDH6CSlLS2SoGqB-mcY89pnuMYWpzLD2AIJ8AEBtz7b7KcRR2inYYCxg4gbm6DDZZnfACcbfHFw8oMPNvr8ie0wjT0e9iH7XSgE9EXM6RQdORsSnP32JXq9u31ZP5DN0_3j-mZDWsF0Js7pRjhHHW-UtTV1SvKmc1yqRitWCS1kLaTWbec6CZJK67iWIFTXrqzVWizRxXx3F6f3PaRsttM-juWl4VLWkqlKVoXiM9XGKaUIzuyiH2z8NIya70DNHKgpgZqfQA0tkpilVOCxh_h3-h_rC3C-enc</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wang, Hei-Chia</creator><creator>Cheng, Jen-Wei</creator><creator>Yang, Che-Tsung</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0002-5790-7506</orcidid></search><sort><creationdate>20220501</creationdate><title>SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments</title><author>Wang, Hei-Chia ; Cheng, Jen-Wei ; Yang, Che-Tsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ff9b3ff0f2b8aa50f862bdf268b9814393653699cdfd6e606af296e38dc7aa993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Citations</topic><topic>Computer Science</topic><topic>Context</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Neural networks</topic><topic>Recommender systems</topic><topic>Recurrent neural networks</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hei-Chia</creatorcontrib><creatorcontrib>Cheng, Jen-Wei</creatorcontrib><creatorcontrib>Yang, Che-Tsung</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hei-Chia</au><au>Cheng, Jen-Wei</au><au>Yang, Che-Tsung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>127</volume><issue>5</issue><spage>2521</spage><epage>2546</epage><pages>2521-2546</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>Efficiently making adequate citations is becoming more challenging due to the rapidly increasing volume of publications. In practice, citing the appropriate references is a time-consuming and skill-required task. Accordingly, many studies have tried to help by providing citation-oriented support. In this field, citation recommendation is a significant research area because it addresses the problems of required profound skills and information overload. In this paper, we propose a sentence-level citation recommender, SentCite, that can identify the sentences that need links to references and can recommend citations. SentCite employs the convolutional recurrent neural network to extract the citing sentences and recommends citations based on the salient similarity between the sentences among the abstract, full text, and in-link context of the target papers. Unlike some other research in the big data domain, the recommended quality papers in this application are very limited. We proposed undersampling inlink context awareness to avoid overfitting problems. SentCite can recommend the most appropriate papers for the given sentences and outperforms other context-based methods in terms of improvement in mean reciprocal rank (MRR) 31.8%, mean average precision (MAP) 30.1%, and normalized discounted cumulative gain (NDCG) 33.8%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-022-04339-0</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5790-7506</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2022-05, Vol.127 (5), p.2521-2546
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_journals_2665618464
source Library & Information Science Abstracts (LISA); Springer Nature
subjects Citations
Computer Science
Context
Information Storage and Retrieval
Library Science
Neural networks
Recommender systems
Recurrent neural networks
Similarity
title SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SentCite:%20a%20sentence-level%20citation%20recommender%20based%20on%20the%20salient%20similarity%20among%20multiple%20segments&rft.jtitle=Scientometrics&rft.au=Wang,%20Hei-Chia&rft.date=2022-05-01&rft.volume=127&rft.issue=5&rft.spage=2521&rft.epage=2546&rft.pages=2521-2546&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-022-04339-0&rft_dat=%3Cproquest_cross%3E2665618464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ff9b3ff0f2b8aa50f862bdf268b9814393653699cdfd6e606af296e38dc7aa993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665618464&rft_id=info:pmid/&rfr_iscdi=true