Loading…

Prediction of thermal conductivity of composites with spherical fillers by successive embedding

In this study, a new model to predict the thermal conductivity of composites with spherical fillers is proposed. The original Eshelby model is extended to a finite filler volume fraction by successively embedding small filler volume fraction. The predicted results by the present model are compared w...

Full description

Saved in:
Bibliographic Details
Published in:Archive of applied mechanics (1991) 2007-07, Vol.77 (7), p.453-460
Main Author: Lee, Jae-Kon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a new model to predict the thermal conductivity of composites with spherical fillers is proposed. The original Eshelby model is extended to a finite filler volume fraction by successively embedding small filler volume fraction. The predicted results by the present model are compared with bounds such as parallel, series, and Hashin–Shtrikman models, results by modified Eshelby model, generalized self-consistent model, and effective medium theory, and the experimental results from the literature. It is found that the present model always lies between the bounds and shows better agreement with the experimental results than the other models for various filler volume fractions and thermal conductivity ratios.
ISSN:0939-1533
1432-0681
DOI:10.1007/s00419-006-0108-7