Loading…
Microwave Discharge in Gas above Regolith Surface
— A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm –2 (the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas dischar...
Saved in:
Published in: | Plasma physics reports 2022-04, Vol.48 (4), p.408-414 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683 |
---|---|
cites | cdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683 |
container_end_page | 414 |
container_issue | 4 |
container_start_page | 408 |
container_title | Plasma physics reports |
container_volume | 48 |
creator | Batanov, G. M. Borzosekov, V. D. Voronova, E. V. Kachmar, V. V. Kolik, L. V. Konchekov, E. M. Letunov, A. A. Malakhov, D. V. Petrov, A. E. Sarksyan, K. A. Skvortsova, N. N. Stepakhin, V. D. Kharchev, N. K. |
description | —
A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm
–2
(the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio
E
0
/
N
0
= 1.03 × 10
–15
V cm
2
was exceeded (
E
0
is the electric field at the reactor axis,
N
0
is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al
2
O
3
+ 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge. |
doi_str_mv | 10.1134/S1063780X22040031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666539103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666539103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zlGqVqEiWAVvyyRu0pSa1N1W8d-7JYIH8TTDfC_mY-wU4RxRyIs5ghbGwgvnIAEE7rERKs1zXQi7n_YE5zv8kB3FuARAtApHDO_bKvSf9OGzqzZWCwqNz9oum1LMqOzT-dE3_ardLLL5NtRU-WN2UNMq-pOfOWbPN9dPk9t89jC9m1zO8ooLxJQlbGmNNspIW5nX2ihvSgKFxiApKWRR1NJL5YF4DRqRNIEokYBDoa0Ys7PBdx36962PG7fst6FLkY5rrZUoEERi4cBKX8QYfO3WoX2j8OUQ3K4Z96eZpOGDJiZu1_jw6_y_6Bu4JGHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666539103</pqid></control><display><type>article</type><title>Microwave Discharge in Gas above Regolith Surface</title><source>Springer Link</source><creator>Batanov, G. M. ; Borzosekov, V. D. ; Voronova, E. V. ; Kachmar, V. V. ; Kolik, L. V. ; Konchekov, E. M. ; Letunov, A. A. ; Malakhov, D. V. ; Petrov, A. E. ; Sarksyan, K. A. ; Skvortsova, N. N. ; Stepakhin, V. D. ; Kharchev, N. K.</creator><creatorcontrib>Batanov, G. M. ; Borzosekov, V. D. ; Voronova, E. V. ; Kachmar, V. V. ; Kolik, L. V. ; Konchekov, E. M. ; Letunov, A. A. ; Malakhov, D. V. ; Petrov, A. E. ; Sarksyan, K. A. ; Skvortsova, N. N. ; Stepakhin, V. D. ; Kharchev, N. K.</creatorcontrib><description>—
A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm
–2
(the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio
E
0
/
N
0
= 1.03 × 10
–15
V cm
2
was exceeded (
E
0
is the electric field at the reactor axis,
N
0
is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al
2
O
3
+ 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X22040031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum oxide ; Atomic ; Electric fields ; Evaporation ; Gas discharges ; Iron oxides ; Low-Temperature Plasma ; Microwave discharge ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Pulse duration ; Rarefaction ; Regolith ; Ultraviolet radiation</subject><ispartof>Plasma physics reports, 2022-04, Vol.48 (4), p.408-414</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-780X, Plasma Physics Reports, 2022, Vol. 48, No. 4, pp. 408–414. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Fizika Plazmy, 2022, Vol. 48, No. 4, pp. 375–382.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</citedby><cites>FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Voronova, E. V.</creatorcontrib><creatorcontrib>Kachmar, V. V.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Letunov, A. A.</creatorcontrib><creatorcontrib>Malakhov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Skvortsova, N. N.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><title>Microwave Discharge in Gas above Regolith Surface</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>—
A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm
–2
(the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio
E
0
/
N
0
= 1.03 × 10
–15
V cm
2
was exceeded (
E
0
is the electric field at the reactor axis,
N
0
is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al
2
O
3
+ 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge.</description><subject>Aluminum oxide</subject><subject>Atomic</subject><subject>Electric fields</subject><subject>Evaporation</subject><subject>Gas discharges</subject><subject>Iron oxides</subject><subject>Low-Temperature Plasma</subject><subject>Microwave discharge</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulse duration</subject><subject>Rarefaction</subject><subject>Regolith</subject><subject>Ultraviolet radiation</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zlGqVqEiWAVvyyRu0pSa1N1W8d-7JYIH8TTDfC_mY-wU4RxRyIs5ghbGwgvnIAEE7rERKs1zXQi7n_YE5zv8kB3FuARAtApHDO_bKvSf9OGzqzZWCwqNz9oum1LMqOzT-dE3_ardLLL5NtRU-WN2UNMq-pOfOWbPN9dPk9t89jC9m1zO8ooLxJQlbGmNNspIW5nX2ihvSgKFxiApKWRR1NJL5YF4DRqRNIEokYBDoa0Ys7PBdx36962PG7fst6FLkY5rrZUoEERi4cBKX8QYfO3WoX2j8OUQ3K4Z96eZpOGDJiZu1_jw6_y_6Bu4JGHA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Batanov, G. M.</creator><creator>Borzosekov, V. D.</creator><creator>Voronova, E. V.</creator><creator>Kachmar, V. V.</creator><creator>Kolik, L. V.</creator><creator>Konchekov, E. M.</creator><creator>Letunov, A. A.</creator><creator>Malakhov, D. V.</creator><creator>Petrov, A. E.</creator><creator>Sarksyan, K. A.</creator><creator>Skvortsova, N. N.</creator><creator>Stepakhin, V. D.</creator><creator>Kharchev, N. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Microwave Discharge in Gas above Regolith Surface</title><author>Batanov, G. M. ; Borzosekov, V. D. ; Voronova, E. V. ; Kachmar, V. V. ; Kolik, L. V. ; Konchekov, E. M. ; Letunov, A. A. ; Malakhov, D. V. ; Petrov, A. E. ; Sarksyan, K. A. ; Skvortsova, N. N. ; Stepakhin, V. D. ; Kharchev, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Atomic</topic><topic>Electric fields</topic><topic>Evaporation</topic><topic>Gas discharges</topic><topic>Iron oxides</topic><topic>Low-Temperature Plasma</topic><topic>Microwave discharge</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulse duration</topic><topic>Rarefaction</topic><topic>Regolith</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Voronova, E. V.</creatorcontrib><creatorcontrib>Kachmar, V. V.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Letunov, A. A.</creatorcontrib><creatorcontrib>Malakhov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Skvortsova, N. N.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batanov, G. M.</au><au>Borzosekov, V. D.</au><au>Voronova, E. V.</au><au>Kachmar, V. V.</au><au>Kolik, L. V.</au><au>Konchekov, E. M.</au><au>Letunov, A. A.</au><au>Malakhov, D. V.</au><au>Petrov, A. E.</au><au>Sarksyan, K. A.</au><au>Skvortsova, N. N.</au><au>Stepakhin, V. D.</au><au>Kharchev, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Discharge in Gas above Regolith Surface</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>48</volume><issue>4</issue><spage>408</spage><epage>414</epage><pages>408-414</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>—
A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm
–2
(the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio
E
0
/
N
0
= 1.03 × 10
–15
V cm
2
was exceeded (
E
0
is the electric field at the reactor axis,
N
0
is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al
2
O
3
+ 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X22040031</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-780X |
ispartof | Plasma physics reports, 2022-04, Vol.48 (4), p.408-414 |
issn | 1063-780X 1562-6938 |
language | eng |
recordid | cdi_proquest_journals_2666539103 |
source | Springer Link |
subjects | Aluminum oxide Atomic Electric fields Evaporation Gas discharges Iron oxides Low-Temperature Plasma Microwave discharge Molecular Optical and Plasma Physics Physics Physics and Astronomy Pulse duration Rarefaction Regolith Ultraviolet radiation |
title | Microwave Discharge in Gas above Regolith Surface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Discharge%20in%20Gas%20above%20Regolith%20Surface&rft.jtitle=Plasma%20physics%20reports&rft.au=Batanov,%20G.%20M.&rft.date=2022-04-01&rft.volume=48&rft.issue=4&rft.spage=408&rft.epage=414&rft.pages=408-414&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X22040031&rft_dat=%3Cproquest_cross%3E2666539103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666539103&rft_id=info:pmid/&rfr_iscdi=true |