Loading…

Microwave Discharge in Gas above Regolith Surface

— A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm –2 (the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas dischar...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics reports 2022-04, Vol.48 (4), p.408-414
Main Authors: Batanov, G. M., Borzosekov, V. D., Voronova, E. V., Kachmar, V. V., Kolik, L. V., Konchekov, E. M., Letunov, A. A., Malakhov, D. V., Petrov, A. E., Sarksyan, K. A., Skvortsova, N. N., Stepakhin, V. D., Kharchev, N. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683
cites cdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683
container_end_page 414
container_issue 4
container_start_page 408
container_title Plasma physics reports
container_volume 48
creator Batanov, G. M.
Borzosekov, V. D.
Voronova, E. V.
Kachmar, V. V.
Kolik, L. V.
Konchekov, E. M.
Letunov, A. A.
Malakhov, D. V.
Petrov, A. E.
Sarksyan, K. A.
Skvortsova, N. N.
Stepakhin, V. D.
Kharchev, N. K.
description — A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm –2 (the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio E 0  / N 0 = 1.03 × 10 –15 V cm 2 was exceeded ( E 0 is the electric field at the reactor axis, N 0 is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al 2 O 3 + 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge.
doi_str_mv 10.1134/S1063780X22040031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666539103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666539103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zlGqVqEiWAVvyyRu0pSa1N1W8d-7JYIH8TTDfC_mY-wU4RxRyIs5ghbGwgvnIAEE7rERKs1zXQi7n_YE5zv8kB3FuARAtApHDO_bKvSf9OGzqzZWCwqNz9oum1LMqOzT-dE3_ardLLL5NtRU-WN2UNMq-pOfOWbPN9dPk9t89jC9m1zO8ooLxJQlbGmNNspIW5nX2ihvSgKFxiApKWRR1NJL5YF4DRqRNIEokYBDoa0Ys7PBdx36962PG7fst6FLkY5rrZUoEERi4cBKX8QYfO3WoX2j8OUQ3K4Z96eZpOGDJiZu1_jw6_y_6Bu4JGHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666539103</pqid></control><display><type>article</type><title>Microwave Discharge in Gas above Regolith Surface</title><source>Springer Link</source><creator>Batanov, G. M. ; Borzosekov, V. D. ; Voronova, E. V. ; Kachmar, V. V. ; Kolik, L. V. ; Konchekov, E. M. ; Letunov, A. A. ; Malakhov, D. V. ; Petrov, A. E. ; Sarksyan, K. A. ; Skvortsova, N. N. ; Stepakhin, V. D. ; Kharchev, N. K.</creator><creatorcontrib>Batanov, G. M. ; Borzosekov, V. D. ; Voronova, E. V. ; Kachmar, V. V. ; Kolik, L. V. ; Konchekov, E. M. ; Letunov, A. A. ; Malakhov, D. V. ; Petrov, A. E. ; Sarksyan, K. A. ; Skvortsova, N. N. ; Stepakhin, V. D. ; Kharchev, N. K.</creatorcontrib><description>— A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm –2 (the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio E 0  / N 0 = 1.03 × 10 –15 V cm 2 was exceeded ( E 0 is the electric field at the reactor axis, N 0 is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al 2 O 3 + 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X22040031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum oxide ; Atomic ; Electric fields ; Evaporation ; Gas discharges ; Iron oxides ; Low-Temperature Plasma ; Microwave discharge ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Pulse duration ; Rarefaction ; Regolith ; Ultraviolet radiation</subject><ispartof>Plasma physics reports, 2022-04, Vol.48 (4), p.408-414</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-780X, Plasma Physics Reports, 2022, Vol. 48, No. 4, pp. 408–414. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Fizika Plazmy, 2022, Vol. 48, No. 4, pp. 375–382.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</citedby><cites>FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Voronova, E. V.</creatorcontrib><creatorcontrib>Kachmar, V. V.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Letunov, A. A.</creatorcontrib><creatorcontrib>Malakhov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Skvortsova, N. N.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><title>Microwave Discharge in Gas above Regolith Surface</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>— A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm –2 (the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio E 0  / N 0 = 1.03 × 10 –15 V cm 2 was exceeded ( E 0 is the electric field at the reactor axis, N 0 is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al 2 O 3 + 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge.</description><subject>Aluminum oxide</subject><subject>Atomic</subject><subject>Electric fields</subject><subject>Evaporation</subject><subject>Gas discharges</subject><subject>Iron oxides</subject><subject>Low-Temperature Plasma</subject><subject>Microwave discharge</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulse duration</subject><subject>Rarefaction</subject><subject>Regolith</subject><subject>Ultraviolet radiation</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3gKeozP7zlGqVqEiWAVvyyRu0pSa1N1W8d-7JYIH8TTDfC_mY-wU4RxRyIs5ghbGwgvnIAEE7rERKs1zXQi7n_YE5zv8kB3FuARAtApHDO_bKvSf9OGzqzZWCwqNz9oum1LMqOzT-dE3_ardLLL5NtRU-WN2UNMq-pOfOWbPN9dPk9t89jC9m1zO8ooLxJQlbGmNNspIW5nX2ihvSgKFxiApKWRR1NJL5YF4DRqRNIEokYBDoa0Ys7PBdx36962PG7fst6FLkY5rrZUoEERi4cBKX8QYfO3WoX2j8OUQ3K4Z96eZpOGDJiZu1_jw6_y_6Bu4JGHA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Batanov, G. M.</creator><creator>Borzosekov, V. D.</creator><creator>Voronova, E. V.</creator><creator>Kachmar, V. V.</creator><creator>Kolik, L. V.</creator><creator>Konchekov, E. M.</creator><creator>Letunov, A. A.</creator><creator>Malakhov, D. V.</creator><creator>Petrov, A. E.</creator><creator>Sarksyan, K. A.</creator><creator>Skvortsova, N. N.</creator><creator>Stepakhin, V. D.</creator><creator>Kharchev, N. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Microwave Discharge in Gas above Regolith Surface</title><author>Batanov, G. M. ; Borzosekov, V. D. ; Voronova, E. V. ; Kachmar, V. V. ; Kolik, L. V. ; Konchekov, E. M. ; Letunov, A. A. ; Malakhov, D. V. ; Petrov, A. E. ; Sarksyan, K. A. ; Skvortsova, N. N. ; Stepakhin, V. D. ; Kharchev, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Atomic</topic><topic>Electric fields</topic><topic>Evaporation</topic><topic>Gas discharges</topic><topic>Iron oxides</topic><topic>Low-Temperature Plasma</topic><topic>Microwave discharge</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulse duration</topic><topic>Rarefaction</topic><topic>Regolith</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Voronova, E. V.</creatorcontrib><creatorcontrib>Kachmar, V. V.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Letunov, A. A.</creatorcontrib><creatorcontrib>Malakhov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Skvortsova, N. N.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batanov, G. M.</au><au>Borzosekov, V. D.</au><au>Voronova, E. V.</au><au>Kachmar, V. V.</au><au>Kolik, L. V.</au><au>Konchekov, E. M.</au><au>Letunov, A. A.</au><au>Malakhov, D. V.</au><au>Petrov, A. E.</au><au>Sarksyan, K. A.</au><au>Skvortsova, N. N.</au><au>Stepakhin, V. D.</au><au>Kharchev, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Discharge in Gas above Regolith Surface</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>48</volume><issue>4</issue><spage>408</spage><epage>414</epage><pages>408-414</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>— A layer of regolith with a 1.35% Al content was irradiated from the side of the reactor supporting plate with a microwave pulse with an intensity of 10–15 kW cm –2 (the wavelength is 4 mm) and a duration of 1.5 ms and 3.5 ms. An air rarefaction of ~76 Torr was created in the reactor. A gas discharge occurred when the ratio E 0  / N 0 = 1.03 × 10 –15 V cm 2 was exceeded ( E 0 is the electric field at the reactor axis, N 0 is the concentration of molecules in air). The discharge above the regolith surface occurred only after microwave breakdown of the air with a delay of more than 200 μs. In this case, evaporation of regolith particles and their ejection into the reactor volume took place. It was found that an increase in the microwave pulse duration to 3.5 ms leads to long-term sparking of regolith particles. This can be explained by the energy release during the reaction 2Al + 3FeO → Al 2 O 3 + 3Fe initiated by the evaporation of iron oxide under the combined action of microwave radiation and UV radiation from the gas discharge.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X22040031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-780X
ispartof Plasma physics reports, 2022-04, Vol.48 (4), p.408-414
issn 1063-780X
1562-6938
language eng
recordid cdi_proquest_journals_2666539103
source Springer Link
subjects Aluminum oxide
Atomic
Electric fields
Evaporation
Gas discharges
Iron oxides
Low-Temperature Plasma
Microwave discharge
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Pulse duration
Rarefaction
Regolith
Ultraviolet radiation
title Microwave Discharge in Gas above Regolith Surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Discharge%20in%20Gas%20above%20Regolith%20Surface&rft.jtitle=Plasma%20physics%20reports&rft.au=Batanov,%20G.%20M.&rft.date=2022-04-01&rft.volume=48&rft.issue=4&rft.spage=408&rft.epage=414&rft.pages=408-414&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X22040031&rft_dat=%3Cproquest_cross%3E2666539103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2311-7838b87675748c7df75e7ba051771a543499f4e45e0a2f0611a6a03b1a0209683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666539103&rft_id=info:pmid/&rfr_iscdi=true