Loading…
Exact Affine Counter Automata
We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown auto...
Saved in:
Published in: | International journal of foundations of computer science 2022-04, Vol.33 (3n04), p.349-370 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c262X-1d90aba7f685f94afbbf5b424e6785c8e76b6d786748acb23db7fe3a30f2dde83 |
container_end_page | 370 |
container_issue | 3n04 |
container_start_page | 349 |
container_title | International journal of foundations of computer science |
container_volume | 33 |
creator | Nakanishi, Masaki Khadiev, Kamil Prusis, Krisjanis Vihrovs, Jevgenijs Yakaryılmaz, Abuzer |
description | We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic
k
-counter automata. Then, we show that exact realtime affine counter automata can recognize a family of regular languages with a few states but the states required by realtime deterministic
k
-counter automata cannot be bounded. We also show that stateless affine increment-only counter automata can recognize some nonregular languages with one-sided bounded-error. Moreover, we show that a promise problem not solved by two-way quantum finite automata in polynomial time can be solved by Las Vegas affine finite automata. Lastly, we present an affine finite automaton algorithm using a counter cleverly to recognize a language, for which we do not know any bounded-error affine finite automata or two-way quantum finite automata recognizing it. |
doi_str_mv | 10.1142/S012905412241009X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666760153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666760153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262X-1d90aba7f685f94afbbf5b424e6785c8e76b6d786748acb23db7fe3a30f2dde83</originalsourceid><addsrcrecordid>eNplkEtLw0AcxBdRMNR-AA9CwHN0n_9NjiHUBxQ8qNDbsk-ItEndTVC_vQkRLz3NYeY3A4PQNcF3hHB6_4oJrbDghFJOMK52ZygjsmIFMMnOUTbbxexfonVKrcGkAiaogAzdbL61HfI6hLbzedOP3eBjXo9Df9CDvkIXQe-TX__pCr0_bN6ap2L78vjc1NvCUqC7grgKa6NlgFKEiutgTBCGU-5BlsKWXoIBJ0uQvNTWUOaMDJ5phgN1zpdshW6X3mPsP0efBvXRj7GbJhUFAAmYCDalyJKysU8p-qCOsT3o-KMIVvMR6uSIicEL89XHvUu29d3Qhtb-o6fIL3nOXiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666760153</pqid></control><display><type>article</type><title>Exact Affine Counter Automata</title><source>World Scientific Journals【Remote access available】</source><creator>Nakanishi, Masaki ; Khadiev, Kamil ; Prusis, Krisjanis ; Vihrovs, Jevgenijs ; Yakaryılmaz, Abuzer</creator><creatorcontrib>Nakanishi, Masaki ; Khadiev, Kamil ; Prusis, Krisjanis ; Vihrovs, Jevgenijs ; Yakaryılmaz, Abuzer</creatorcontrib><description>We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic
k
-counter automata. Then, we show that exact realtime affine counter automata can recognize a family of regular languages with a few states but the states required by realtime deterministic
k
-counter automata cannot be bounded. We also show that stateless affine increment-only counter automata can recognize some nonregular languages with one-sided bounded-error. Moreover, we show that a promise problem not solved by two-way quantum finite automata in polynomial time can be solved by Las Vegas affine finite automata. Lastly, we present an affine finite automaton algorithm using a counter cleverly to recognize a language, for which we do not know any bounded-error affine finite automata or two-way quantum finite automata recognizing it.</description><identifier>ISSN: 0129-0541</identifier><identifier>EISSN: 1793-6373</identifier><identifier>DOI: 10.1142/S012905412241009X</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Algorithms ; Languages ; Polynomials ; Real time</subject><ispartof>International journal of foundations of computer science, 2022-04, Vol.33 (3n04), p.349-370</ispartof><rights>2022, World Scientific Publishing Company</rights><rights>2022. World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262X-1d90aba7f685f94afbbf5b424e6785c8e76b6d786748acb23db7fe3a30f2dde83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S012905412241009X$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,780,784,3213,4872,27924,27925,55587</link.rule.ids></links><search><creatorcontrib>Nakanishi, Masaki</creatorcontrib><creatorcontrib>Khadiev, Kamil</creatorcontrib><creatorcontrib>Prusis, Krisjanis</creatorcontrib><creatorcontrib>Vihrovs, Jevgenijs</creatorcontrib><creatorcontrib>Yakaryılmaz, Abuzer</creatorcontrib><title>Exact Affine Counter Automata</title><title>International journal of foundations of computer science</title><description>We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic
k
-counter automata. Then, we show that exact realtime affine counter automata can recognize a family of regular languages with a few states but the states required by realtime deterministic
k
-counter automata cannot be bounded. We also show that stateless affine increment-only counter automata can recognize some nonregular languages with one-sided bounded-error. Moreover, we show that a promise problem not solved by two-way quantum finite automata in polynomial time can be solved by Las Vegas affine finite automata. Lastly, we present an affine finite automaton algorithm using a counter cleverly to recognize a language, for which we do not know any bounded-error affine finite automata or two-way quantum finite automata recognizing it.</description><subject>Algorithms</subject><subject>Languages</subject><subject>Polynomials</subject><subject>Real time</subject><issn>0129-0541</issn><issn>1793-6373</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkEtLw0AcxBdRMNR-AA9CwHN0n_9NjiHUBxQ8qNDbsk-ItEndTVC_vQkRLz3NYeY3A4PQNcF3hHB6_4oJrbDghFJOMK52ZygjsmIFMMnOUTbbxexfonVKrcGkAiaogAzdbL61HfI6hLbzedOP3eBjXo9Df9CDvkIXQe-TX__pCr0_bN6ap2L78vjc1NvCUqC7grgKa6NlgFKEiutgTBCGU-5BlsKWXoIBJ0uQvNTWUOaMDJ5phgN1zpdshW6X3mPsP0efBvXRj7GbJhUFAAmYCDalyJKysU8p-qCOsT3o-KMIVvMR6uSIicEL89XHvUu29d3Qhtb-o6fIL3nOXiU</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Nakanishi, Masaki</creator><creator>Khadiev, Kamil</creator><creator>Prusis, Krisjanis</creator><creator>Vihrovs, Jevgenijs</creator><creator>Yakaryılmaz, Abuzer</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202204</creationdate><title>Exact Affine Counter Automata</title><author>Nakanishi, Masaki ; Khadiev, Kamil ; Prusis, Krisjanis ; Vihrovs, Jevgenijs ; Yakaryılmaz, Abuzer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262X-1d90aba7f685f94afbbf5b424e6785c8e76b6d786748acb23db7fe3a30f2dde83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Languages</topic><topic>Polynomials</topic><topic>Real time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakanishi, Masaki</creatorcontrib><creatorcontrib>Khadiev, Kamil</creatorcontrib><creatorcontrib>Prusis, Krisjanis</creatorcontrib><creatorcontrib>Vihrovs, Jevgenijs</creatorcontrib><creatorcontrib>Yakaryılmaz, Abuzer</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of foundations of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakanishi, Masaki</au><au>Khadiev, Kamil</au><au>Prusis, Krisjanis</au><au>Vihrovs, Jevgenijs</au><au>Yakaryılmaz, Abuzer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Affine Counter Automata</atitle><jtitle>International journal of foundations of computer science</jtitle><date>2022-04</date><risdate>2022</risdate><volume>33</volume><issue>3n04</issue><spage>349</spage><epage>370</epage><pages>349-370</pages><issn>0129-0541</issn><eissn>1793-6373</eissn><abstract>We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic
k
-counter automata. Then, we show that exact realtime affine counter automata can recognize a family of regular languages with a few states but the states required by realtime deterministic
k
-counter automata cannot be bounded. We also show that stateless affine increment-only counter automata can recognize some nonregular languages with one-sided bounded-error. Moreover, we show that a promise problem not solved by two-way quantum finite automata in polynomial time can be solved by Las Vegas affine finite automata. Lastly, we present an affine finite automaton algorithm using a counter cleverly to recognize a language, for which we do not know any bounded-error affine finite automata or two-way quantum finite automata recognizing it.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S012905412241009X</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0129-0541 |
ispartof | International journal of foundations of computer science, 2022-04, Vol.33 (3n04), p.349-370 |
issn | 0129-0541 1793-6373 |
language | eng |
recordid | cdi_proquest_journals_2666760153 |
source | World Scientific Journals【Remote access available】 |
subjects | Algorithms Languages Polynomials Real time |
title | Exact Affine Counter Automata |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Affine%20Counter%20Automata&rft.jtitle=International%20journal%20of%20foundations%20of%20computer%20science&rft.au=Nakanishi,%20Masaki&rft.date=2022-04&rft.volume=33&rft.issue=3n04&rft.spage=349&rft.epage=370&rft.pages=349-370&rft.issn=0129-0541&rft.eissn=1793-6373&rft_id=info:doi/10.1142/S012905412241009X&rft_dat=%3Cproquest_cross%3E2666760153%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262X-1d90aba7f685f94afbbf5b424e6785c8e76b6d786748acb23db7fe3a30f2dde83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666760153&rft_id=info:pmid/&rfr_iscdi=true |