Loading…
An exploitation-enhanced multi-objective efficient global optimization algorithm for expensive aerodynamic shape optimizations
The traditional multi-objective efficient global optimization (EGO) algorithms have been hybridized and adapted to solving the expensive aerodynamic shape optimization problems based on high-fidelity numerical simulations. Although the traditional EGO algorithms are highly efficient in solving some...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2022-06, Vol.236 (7), p.1408-1421 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The traditional multi-objective efficient global optimization (EGO) algorithms have been hybridized and adapted to solving the expensive aerodynamic shape optimization problems based on high-fidelity numerical simulations. Although the traditional EGO algorithms are highly efficient in solving some of the optimization problems with very complex landscape, it is not preferred to solve most of the aerodynamic shape optimization problems with relatively low-degree multi-modal design spaces. A new infill criterion encouraging more local exploitation has been proposed by hybridizing two traditional multi-objective expected improvements (EIs), namely, statistical multi-objective EI and expected hypervolume improvement, in order to improve their robustness and efficiency in aerodynamic shape optimization. Different analytical test problems and aerodynamic shape optimization problems have been investigated. In comparison with traditional multi-objective EI algorithms and a standard evolutionary multi-objective optimization algorithm, the proposed method is shown to be more robust and efficient in the tests due to its hybrid characteristics, easier handling of sub-optimization problems, and enhanced exploitation capability. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/09544100211032432 |