Loading…

An octree-based, cartesian navier–stokes solver for modern cluster architectures

Adaptive Cartesian mesh approaches have proven useful for multi-scale applications where particular features can be finely resolved within a large solution domain. Traditional patch-based mesh refinement has demonstrated widespread applicability across a range of problems, but can face performance c...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2022, Vol.78 (9), p.11409-11440
Main Authors: Jude, Dylan, Sitaraman, Jayanarayanan, Wissink, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-df484d3e03dc63a8ff618b3f08b2a7a3cf4f6e7b0671eacf1882ade82893abc83
cites cdi_FETCH-LOGICAL-c249t-df484d3e03dc63a8ff618b3f08b2a7a3cf4f6e7b0671eacf1882ade82893abc83
container_end_page 11440
container_issue 9
container_start_page 11409
container_title The Journal of supercomputing
container_volume 78
creator Jude, Dylan
Sitaraman, Jayanarayanan
Wissink, Andrew
description Adaptive Cartesian mesh approaches have proven useful for multi-scale applications where particular features can be finely resolved within a large solution domain. Traditional patch-based mesh refinement has demonstrated widespread applicability across a range of problems, but can face performance challenges when applied to very large cases with billions of grid points running on large-scale hybrid CPU/GPU architectures. This work investigates an octree-based method combined with traditional finite-difference algorithms specifically designed to execute structured mesh refinement applications efficiently on modern cluster architectures. The primary application of the approach is the solution of helicopter rotor aerodynamics, where it is desirable to resolve time-dependent, fine-scale tip vortices within a solution domain that encompasses the entire helicopter and extends several rotor diameters away. This work demonstrates the performance of the octree construction and balance algorithms to scale to billions of mesh cells. A canonical problem (convecting vortex) and two application problems (helicopter rotor simulations) verify and validate the performance and accuracy of the developed framework, Orchard, on CPU and GPU architectures. Scaling on CPUs and GPUs is demonstrated up to 140 Xeon sockets and 36 V100 GPUS, respectively. The solver on GPUs demonstrates an order-of-magnitude speedup over execution on traditional CPU cluster nodes.
doi_str_mv 10.1007/s11227-022-04324-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666933309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666933309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-df484d3e03dc63a8ff618b3f08b2a7a3cf4f6e7b0671eacf1882ade82893abc83</originalsourceid><addsrcrecordid>eNp9kM1KxDAQx4MouK6-gKeCV6P56DbpcVn8ggVB9BzSdKJdd5s1kwrefAff0CcxWsGbp2GG339m-BFyzNkZZ0ydI-dCKMqEoKyUoqRqh0z4TMnc6nKXTFgtGNWzUuyTA8QVYxlTckLu5n0RXIoAtLEI7WnhbEyAne2L3r52ED_fPzCFZ8ACw_oVYuFDLDahhdgXbj1gyiMb3VOXwKUhAh6SPW_XCEe_dUoeLi_uF9d0eXt1s5gvqRNlnWjr82etBCZbV0mrva-4bqRnuhFWWel86StQDasUB-s811rYFrTQtbSN03JKTsa92xheBsBkVmGIfT5pRFVVtZSS1ZkSI-ViQIzgzTZ2GxvfDGfm250Z3Znszvy4MyqH5BjCDPePEP9W_5P6AlVpdAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666933309</pqid></control><display><type>article</type><title>An octree-based, cartesian navier–stokes solver for modern cluster architectures</title><source>Springer Link</source><creator>Jude, Dylan ; Sitaraman, Jayanarayanan ; Wissink, Andrew</creator><creatorcontrib>Jude, Dylan ; Sitaraman, Jayanarayanan ; Wissink, Andrew</creatorcontrib><description>Adaptive Cartesian mesh approaches have proven useful for multi-scale applications where particular features can be finely resolved within a large solution domain. Traditional patch-based mesh refinement has demonstrated widespread applicability across a range of problems, but can face performance challenges when applied to very large cases with billions of grid points running on large-scale hybrid CPU/GPU architectures. This work investigates an octree-based method combined with traditional finite-difference algorithms specifically designed to execute structured mesh refinement applications efficiently on modern cluster architectures. The primary application of the approach is the solution of helicopter rotor aerodynamics, where it is desirable to resolve time-dependent, fine-scale tip vortices within a solution domain that encompasses the entire helicopter and extends several rotor diameters away. This work demonstrates the performance of the octree construction and balance algorithms to scale to billions of mesh cells. A canonical problem (convecting vortex) and two application problems (helicopter rotor simulations) verify and validate the performance and accuracy of the developed framework, Orchard, on CPU and GPU architectures. Scaling on CPUs and GPUs is demonstrated up to 140 Xeon sockets and 36 V100 GPUS, respectively. The solver on GPUs demonstrates an order-of-magnitude speedup over execution on traditional CPU cluster nodes.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04324-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerodynamics ; Algorithms ; Cartesian coordinates ; Clusters ; Compilers ; Computer Science ; Domains ; Finite difference method ; Finite element method ; Grid refinement (mathematics) ; Interpreters ; Octrees ; Processor Architectures ; Programming Languages ; Rotary wings ; Rotor aerodynamics ; Solvers</subject><ispartof>The Journal of supercomputing, 2022, Vol.78 (9), p.11409-11440</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-df484d3e03dc63a8ff618b3f08b2a7a3cf4f6e7b0671eacf1882ade82893abc83</citedby><cites>FETCH-LOGICAL-c249t-df484d3e03dc63a8ff618b3f08b2a7a3cf4f6e7b0671eacf1882ade82893abc83</cites><orcidid>0000-0002-8612-7293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Jude, Dylan</creatorcontrib><creatorcontrib>Sitaraman, Jayanarayanan</creatorcontrib><creatorcontrib>Wissink, Andrew</creatorcontrib><title>An octree-based, cartesian navier–stokes solver for modern cluster architectures</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Adaptive Cartesian mesh approaches have proven useful for multi-scale applications where particular features can be finely resolved within a large solution domain. Traditional patch-based mesh refinement has demonstrated widespread applicability across a range of problems, but can face performance challenges when applied to very large cases with billions of grid points running on large-scale hybrid CPU/GPU architectures. This work investigates an octree-based method combined with traditional finite-difference algorithms specifically designed to execute structured mesh refinement applications efficiently on modern cluster architectures. The primary application of the approach is the solution of helicopter rotor aerodynamics, where it is desirable to resolve time-dependent, fine-scale tip vortices within a solution domain that encompasses the entire helicopter and extends several rotor diameters away. This work demonstrates the performance of the octree construction and balance algorithms to scale to billions of mesh cells. A canonical problem (convecting vortex) and two application problems (helicopter rotor simulations) verify and validate the performance and accuracy of the developed framework, Orchard, on CPU and GPU architectures. Scaling on CPUs and GPUs is demonstrated up to 140 Xeon sockets and 36 V100 GPUS, respectively. The solver on GPUs demonstrates an order-of-magnitude speedup over execution on traditional CPU cluster nodes.</description><subject>Aerodynamics</subject><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Clusters</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Domains</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Grid refinement (mathematics)</subject><subject>Interpreters</subject><subject>Octrees</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Rotary wings</subject><subject>Rotor aerodynamics</subject><subject>Solvers</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQx4MouK6-gKeCV6P56DbpcVn8ggVB9BzSdKJdd5s1kwrefAff0CcxWsGbp2GG339m-BFyzNkZZ0ydI-dCKMqEoKyUoqRqh0z4TMnc6nKXTFgtGNWzUuyTA8QVYxlTckLu5n0RXIoAtLEI7WnhbEyAne2L3r52ED_fPzCFZ8ACw_oVYuFDLDahhdgXbj1gyiMb3VOXwKUhAh6SPW_XCEe_dUoeLi_uF9d0eXt1s5gvqRNlnWjr82etBCZbV0mrva-4bqRnuhFWWel86StQDasUB-s811rYFrTQtbSN03JKTsa92xheBsBkVmGIfT5pRFVVtZSS1ZkSI-ViQIzgzTZ2GxvfDGfm250Z3Znszvy4MyqH5BjCDPePEP9W_5P6AlVpdAo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Jude, Dylan</creator><creator>Sitaraman, Jayanarayanan</creator><creator>Wissink, Andrew</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8612-7293</orcidid></search><sort><creationdate>2022</creationdate><title>An octree-based, cartesian navier–stokes solver for modern cluster architectures</title><author>Jude, Dylan ; Sitaraman, Jayanarayanan ; Wissink, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-df484d3e03dc63a8ff618b3f08b2a7a3cf4f6e7b0671eacf1882ade82893abc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamics</topic><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Clusters</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Domains</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Grid refinement (mathematics)</topic><topic>Interpreters</topic><topic>Octrees</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Rotary wings</topic><topic>Rotor aerodynamics</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jude, Dylan</creatorcontrib><creatorcontrib>Sitaraman, Jayanarayanan</creatorcontrib><creatorcontrib>Wissink, Andrew</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jude, Dylan</au><au>Sitaraman, Jayanarayanan</au><au>Wissink, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An octree-based, cartesian navier–stokes solver for modern cluster architectures</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022</date><risdate>2022</risdate><volume>78</volume><issue>9</issue><spage>11409</spage><epage>11440</epage><pages>11409-11440</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Adaptive Cartesian mesh approaches have proven useful for multi-scale applications where particular features can be finely resolved within a large solution domain. Traditional patch-based mesh refinement has demonstrated widespread applicability across a range of problems, but can face performance challenges when applied to very large cases with billions of grid points running on large-scale hybrid CPU/GPU architectures. This work investigates an octree-based method combined with traditional finite-difference algorithms specifically designed to execute structured mesh refinement applications efficiently on modern cluster architectures. The primary application of the approach is the solution of helicopter rotor aerodynamics, where it is desirable to resolve time-dependent, fine-scale tip vortices within a solution domain that encompasses the entire helicopter and extends several rotor diameters away. This work demonstrates the performance of the octree construction and balance algorithms to scale to billions of mesh cells. A canonical problem (convecting vortex) and two application problems (helicopter rotor simulations) verify and validate the performance and accuracy of the developed framework, Orchard, on CPU and GPU architectures. Scaling on CPUs and GPUs is demonstrated up to 140 Xeon sockets and 36 V100 GPUS, respectively. The solver on GPUs demonstrates an order-of-magnitude speedup over execution on traditional CPU cluster nodes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04324-7</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8612-7293</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022, Vol.78 (9), p.11409-11440
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2666933309
source Springer Link
subjects Aerodynamics
Algorithms
Cartesian coordinates
Clusters
Compilers
Computer Science
Domains
Finite difference method
Finite element method
Grid refinement (mathematics)
Interpreters
Octrees
Processor Architectures
Programming Languages
Rotary wings
Rotor aerodynamics
Solvers
title An octree-based, cartesian navier–stokes solver for modern cluster architectures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20octree-based,%20cartesian%20navier%E2%80%93stokes%20solver%20for%20modern%20cluster%20architectures&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Jude,%20Dylan&rft.date=2022&rft.volume=78&rft.issue=9&rft.spage=11409&rft.epage=11440&rft.pages=11409-11440&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04324-7&rft_dat=%3Cproquest_cross%3E2666933309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-df484d3e03dc63a8ff618b3f08b2a7a3cf4f6e7b0671eacf1882ade82893abc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666933309&rft_id=info:pmid/&rfr_iscdi=true