Loading…

Maximizing Energy Extraction from Direct Grid Coupled PMSG For Wind Energy Conversion Systems

Direct grid coupling of permanent magnet synchronous generators (PMSG) for wind energy conversion systems provides certain advantages with the penalties of maximum power point tracking (MPPT) and reactive power control. This article proposes a novel PMSG design philosophy such that optimizing PMSG d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2022-05, Vol.58 (3), p.3888-3900
Main Authors: Bakbak, Ali, Canseven, Huseyin Tayyer, Ayaz, Murat, Altintas, Mert, Mese, Erkan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Direct grid coupling of permanent magnet synchronous generators (PMSG) for wind energy conversion systems provides certain advantages with the penalties of maximum power point tracking (MPPT) and reactive power control. This article proposes a novel PMSG design philosophy such that optimizing PMSG design at the initial stage would compensate for the drawbacks arising from the lack of an MPPT algorithm. Also, the ability to maintain a high PF across a wide range of operating power levels is investigated by considering reactive power in the design process. In this article, optimization of slot/pole combination is described for direct grid coupled PMSGs to extract as much energy as possible according to wind data. A new benchmark, adequacy factor, is presented to determine the slot/pole combination. Variation of the reactive power is theoretically analyzed. A relationship is established between induced electromotive force, synchronous inductance values of machines, and the PF. Fixed and variable speed operations of PMSGs are compared in terms of annual energy yield. Finally, theoretical analyses are validated through laboratory testing of prototype generators.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2022.3160141