Loading…
Acceptability Judgements via Examining the Topology of Attention Maps
The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topol...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cherniavskii, Daniil Tulchinskii, Eduard Mikhailov, Vladislav Proskurina, Irina Kushnareva, Laida Artemova, Ekaterina Barannikov, Serguei Piontkovskaya, Irina Piontkovski, Dmitri Burnaev, Evgeny |
description | The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by \(8\)%-\(24\)% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena. |
doi_str_mv | 10.48550/arxiv.2205.09630 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2667075347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667075347</sourcerecordid><originalsourceid>FETCH-LOGICAL-a950-bbcbffea0fb8cd9e61c243685c08d0c350d7f35961587998bd97e938ece405e3</originalsourceid><addsrcrecordid>eNotjTtrwzAYAEWh0JDmB3QTdLb7WbJeownui5QOzR4kWXIVHMuN5JD8-wba6ZbjDqGHCspaMgZP-ngOp5IQYCUoTuEGLQilVSFrQu7QKqU9ABAuCGN0gdrGWjdlbcIQ8gW_z13vDm7MCZ-Cxu1ZH8IYxh7nb4e3cYpD7C84etzkfLVCHPGHntI9uvV6SG71zyX6em6369di8_nytm42hVYMCmOs8d5p8EbaTjleWVJTLpkF2YGlDDrhKVO8YlIoJU2nhFNUOutqYI4u0eNfdTrGn9mlvNvH-ThehzvCuQDBaC3oLyyhTNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667075347</pqid></control><display><type>article</type><title>Acceptability Judgements via Examining the Topology of Attention Maps</title><source>Publicly Available Content Database</source><creator>Cherniavskii, Daniil ; Tulchinskii, Eduard ; Mikhailov, Vladislav ; Proskurina, Irina ; Kushnareva, Laida ; Artemova, Ekaterina ; Barannikov, Serguei ; Piontkovskaya, Irina ; Piontkovski, Dmitri ; Burnaev, Evgeny</creator><creatorcontrib>Cherniavskii, Daniil ; Tulchinskii, Eduard ; Mikhailov, Vladislav ; Proskurina, Irina ; Kushnareva, Laida ; Artemova, Ekaterina ; Barannikov, Serguei ; Piontkovskaya, Irina ; Piontkovski, Dmitri ; Burnaev, Evgeny</creatorcontrib><description>The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by \(8\)%-\(24\)% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2205.09630</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acceptability ; Data analysis ; Human performance ; Linguistics ; Topology</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2667075347?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cherniavskii, Daniil</creatorcontrib><creatorcontrib>Tulchinskii, Eduard</creatorcontrib><creatorcontrib>Mikhailov, Vladislav</creatorcontrib><creatorcontrib>Proskurina, Irina</creatorcontrib><creatorcontrib>Kushnareva, Laida</creatorcontrib><creatorcontrib>Artemova, Ekaterina</creatorcontrib><creatorcontrib>Barannikov, Serguei</creatorcontrib><creatorcontrib>Piontkovskaya, Irina</creatorcontrib><creatorcontrib>Piontkovski, Dmitri</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><title>Acceptability Judgements via Examining the Topology of Attention Maps</title><title>arXiv.org</title><description>The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by \(8\)%-\(24\)% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena.</description><subject>Acceptability</subject><subject>Data analysis</subject><subject>Human performance</subject><subject>Linguistics</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjTtrwzAYAEWh0JDmB3QTdLb7WbJeownui5QOzR4kWXIVHMuN5JD8-wba6ZbjDqGHCspaMgZP-ngOp5IQYCUoTuEGLQilVSFrQu7QKqU9ABAuCGN0gdrGWjdlbcIQ8gW_z13vDm7MCZ-Cxu1ZH8IYxh7nb4e3cYpD7C84etzkfLVCHPGHntI9uvV6SG71zyX6em6369di8_nytm42hVYMCmOs8d5p8EbaTjleWVJTLpkF2YGlDDrhKVO8YlIoJU2nhFNUOutqYI4u0eNfdTrGn9mlvNvH-ThehzvCuQDBaC3oLyyhTNs</recordid><startdate>20221023</startdate><enddate>20221023</enddate><creator>Cherniavskii, Daniil</creator><creator>Tulchinskii, Eduard</creator><creator>Mikhailov, Vladislav</creator><creator>Proskurina, Irina</creator><creator>Kushnareva, Laida</creator><creator>Artemova, Ekaterina</creator><creator>Barannikov, Serguei</creator><creator>Piontkovskaya, Irina</creator><creator>Piontkovski, Dmitri</creator><creator>Burnaev, Evgeny</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20221023</creationdate><title>Acceptability Judgements via Examining the Topology of Attention Maps</title><author>Cherniavskii, Daniil ; Tulchinskii, Eduard ; Mikhailov, Vladislav ; Proskurina, Irina ; Kushnareva, Laida ; Artemova, Ekaterina ; Barannikov, Serguei ; Piontkovskaya, Irina ; Piontkovski, Dmitri ; Burnaev, Evgeny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a950-bbcbffea0fb8cd9e61c243685c08d0c350d7f35961587998bd97e938ece405e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceptability</topic><topic>Data analysis</topic><topic>Human performance</topic><topic>Linguistics</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Cherniavskii, Daniil</creatorcontrib><creatorcontrib>Tulchinskii, Eduard</creatorcontrib><creatorcontrib>Mikhailov, Vladislav</creatorcontrib><creatorcontrib>Proskurina, Irina</creatorcontrib><creatorcontrib>Kushnareva, Laida</creatorcontrib><creatorcontrib>Artemova, Ekaterina</creatorcontrib><creatorcontrib>Barannikov, Serguei</creatorcontrib><creatorcontrib>Piontkovskaya, Irina</creatorcontrib><creatorcontrib>Piontkovski, Dmitri</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherniavskii, Daniil</au><au>Tulchinskii, Eduard</au><au>Mikhailov, Vladislav</au><au>Proskurina, Irina</au><au>Kushnareva, Laida</au><au>Artemova, Ekaterina</au><au>Barannikov, Serguei</au><au>Piontkovskaya, Irina</au><au>Piontkovski, Dmitri</au><au>Burnaev, Evgeny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceptability Judgements via Examining the Topology of Attention Maps</atitle><jtitle>arXiv.org</jtitle><date>2022-10-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by \(8\)%-\(24\)% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2205.09630</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2667075347 |
source | Publicly Available Content Database |
subjects | Acceptability Data analysis Human performance Linguistics Topology |
title | Acceptability Judgements via Examining the Topology of Attention Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceptability%20Judgements%20via%20Examining%20the%20Topology%20of%20Attention%20Maps&rft.jtitle=arXiv.org&rft.au=Cherniavskii,%20Daniil&rft.date=2022-10-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2205.09630&rft_dat=%3Cproquest%3E2667075347%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a950-bbcbffea0fb8cd9e61c243685c08d0c350d7f35961587998bd97e938ece405e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667075347&rft_id=info:pmid/&rfr_iscdi=true |