Loading…
Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia
Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Up...
Saved in:
Published in: | Geology (Boulder) 2022-03, Vol.50 (6), p.741-745 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053 |
---|---|
cites | cdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053 |
container_end_page | 745 |
container_issue | 6 |
container_start_page | 741 |
container_title | Geology (Boulder) |
container_volume | 50 |
creator | Mantilla, O Hernandez-Molina, F. J Scarselli, N |
description | Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments. |
doi_str_mv | 10.1130/G50068.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667261740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667261740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhU1podu00J8g6KXQOhnJli2fyrK0acNCL8nZzMqjjYMtuSOZTf5Uf2PUbg89Dbz5eO_BK4r3Ei6lrODqWgM05lK-KDayq6tSNUa9LDYAnSzbRlavizcxPgDIWrdmU_zeoRcD0XLCRCwOIaUwC7syk09RHMkT54-w0-hDuqc5fhFbL-gR52UiEZxAMSEf6bPA-DTPlHi0Yg6rH2gQA48uidGLu2XJ7jcrY4z5n4LYh1NWdkwJLYU1ikjDOP8NdZwr-MDp_kQxt_Jiu8bEOI34tnjlcIr07t-9KO6-fb3dfS_3P69_7Lb7ElVrUkmGBqN1BdgcdGs11pLQkdaHzh20srqD1hLoipTq0JCyBlBVDkE5I7N-UXw4-y4cfq25Rf8QVvY5sldN06pGtjVk6uOZshxiZHL9wuOM_NRL6P-s0Z_X6GVGP53RI4VoR_KWToGn4T9fUKoHBbpuq2fny47f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667261740</pqid></control><display><type>article</type><title>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</title><source>GeoScienceWorld</source><creator>Mantilla, O ; Hernandez-Molina, F. J ; Scarselli, N</creator><creatorcontrib>Mantilla, O ; Hernandez-Molina, F. J ; Scarselli, N</creatorcontrib><description>Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G50068.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>applied (geophysical surveys & methods) ; Asymmetry ; Australasia ; Australia ; Bottom currents ; burial ; clastic sediments ; clinothems ; contourite ; cores ; Cretaceous ; currents ; Deep water ; deep-water environment ; Drift ; Exmouth Plateau ; Fossils ; Geology ; geophysical methods ; geophysical profiles ; geophysical surveys ; Geophysics ; Indian Ocean ; Jurassic ; lateral heterogeneity ; Lower Cretaceous ; marine environment ; Mesozoic ; northwestern Australia ; Offshore ; paleocirculation ; paleocurrents ; Progradation ; sed rocks, sediments ; Sediment ; Sedimentary petrology ; sedimentary structures ; Sediments ; seismic methods ; seismic profiles ; seismic stratigraphy ; surveys ; symmetry ; Trends ; Upper Jurassic ; Water masses</subject><ispartof>Geology (Boulder), 2022-03, Vol.50 (6), p.741-745</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jun 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</citedby><cites>FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G50068.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,38879,77594</link.rule.ids></links><search><creatorcontrib>Mantilla, O</creatorcontrib><creatorcontrib>Hernandez-Molina, F. J</creatorcontrib><creatorcontrib>Scarselli, N</creatorcontrib><title>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</title><title>Geology (Boulder)</title><description>Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments.</description><subject>applied (geophysical surveys & methods)</subject><subject>Asymmetry</subject><subject>Australasia</subject><subject>Australia</subject><subject>Bottom currents</subject><subject>burial</subject><subject>clastic sediments</subject><subject>clinothems</subject><subject>contourite</subject><subject>cores</subject><subject>Cretaceous</subject><subject>currents</subject><subject>Deep water</subject><subject>deep-water environment</subject><subject>Drift</subject><subject>Exmouth Plateau</subject><subject>Fossils</subject><subject>Geology</subject><subject>geophysical methods</subject><subject>geophysical profiles</subject><subject>geophysical surveys</subject><subject>Geophysics</subject><subject>Indian Ocean</subject><subject>Jurassic</subject><subject>lateral heterogeneity</subject><subject>Lower Cretaceous</subject><subject>marine environment</subject><subject>Mesozoic</subject><subject>northwestern Australia</subject><subject>Offshore</subject><subject>paleocirculation</subject><subject>paleocurrents</subject><subject>Progradation</subject><subject>sed rocks, sediments</subject><subject>Sediment</subject><subject>Sedimentary petrology</subject><subject>sedimentary structures</subject><subject>Sediments</subject><subject>seismic methods</subject><subject>seismic profiles</subject><subject>seismic stratigraphy</subject><subject>surveys</subject><subject>symmetry</subject><subject>Trends</subject><subject>Upper Jurassic</subject><subject>Water masses</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkUFr3DAQhU1podu00J8g6KXQOhnJli2fyrK0acNCL8nZzMqjjYMtuSOZTf5Uf2PUbg89Dbz5eO_BK4r3Ei6lrODqWgM05lK-KDayq6tSNUa9LDYAnSzbRlavizcxPgDIWrdmU_zeoRcD0XLCRCwOIaUwC7syk09RHMkT54-w0-hDuqc5fhFbL-gR52UiEZxAMSEf6bPA-DTPlHi0Yg6rH2gQA48uidGLu2XJ7jcrY4z5n4LYh1NWdkwJLYU1ikjDOP8NdZwr-MDp_kQxt_Jiu8bEOI34tnjlcIr07t-9KO6-fb3dfS_3P69_7Lb7ElVrUkmGBqN1BdgcdGs11pLQkdaHzh20srqD1hLoipTq0JCyBlBVDkE5I7N-UXw4-y4cfq25Rf8QVvY5sldN06pGtjVk6uOZshxiZHL9wuOM_NRL6P-s0Z_X6GVGP53RI4VoR_KWToGn4T9fUKoHBbpuq2fny47f</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Mantilla, O</creator><creator>Hernandez-Molina, F. J</creator><creator>Scarselli, N</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20220324</creationdate><title>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</title><author>Mantilla, O ; Hernandez-Molina, F. J ; Scarselli, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>applied (geophysical surveys & methods)</topic><topic>Asymmetry</topic><topic>Australasia</topic><topic>Australia</topic><topic>Bottom currents</topic><topic>burial</topic><topic>clastic sediments</topic><topic>clinothems</topic><topic>contourite</topic><topic>cores</topic><topic>Cretaceous</topic><topic>currents</topic><topic>Deep water</topic><topic>deep-water environment</topic><topic>Drift</topic><topic>Exmouth Plateau</topic><topic>Fossils</topic><topic>Geology</topic><topic>geophysical methods</topic><topic>geophysical profiles</topic><topic>geophysical surveys</topic><topic>Geophysics</topic><topic>Indian Ocean</topic><topic>Jurassic</topic><topic>lateral heterogeneity</topic><topic>Lower Cretaceous</topic><topic>marine environment</topic><topic>Mesozoic</topic><topic>northwestern Australia</topic><topic>Offshore</topic><topic>paleocirculation</topic><topic>paleocurrents</topic><topic>Progradation</topic><topic>sed rocks, sediments</topic><topic>Sediment</topic><topic>Sedimentary petrology</topic><topic>sedimentary structures</topic><topic>Sediments</topic><topic>seismic methods</topic><topic>seismic profiles</topic><topic>seismic stratigraphy</topic><topic>surveys</topic><topic>symmetry</topic><topic>Trends</topic><topic>Upper Jurassic</topic><topic>Water masses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mantilla, O</creatorcontrib><creatorcontrib>Hernandez-Molina, F. J</creatorcontrib><creatorcontrib>Scarselli, N</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mantilla, O</au><au>Hernandez-Molina, F. J</au><au>Scarselli, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</atitle><jtitle>Geology (Boulder)</jtitle><date>2022-03-24</date><risdate>2022</risdate><volume>50</volume><issue>6</issue><spage>741</spage><epage>745</epage><pages>741-745</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G50068.1</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2022-03, Vol.50 (6), p.741-745 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_journals_2667261740 |
source | GeoScienceWorld |
subjects | applied (geophysical surveys & methods) Asymmetry Australasia Australia Bottom currents burial clastic sediments clinothems contourite cores Cretaceous currents Deep water deep-water environment Drift Exmouth Plateau Fossils Geology geophysical methods geophysical profiles geophysical surveys Geophysics Indian Ocean Jurassic lateral heterogeneity Lower Cretaceous marine environment Mesozoic northwestern Australia Offshore paleocirculation paleocurrents Progradation sed rocks, sediments Sediment Sedimentary petrology sedimentary structures Sediments seismic methods seismic profiles seismic stratigraphy surveys symmetry Trends Upper Jurassic Water masses |
title | Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20deepwater%20bottom%20currents%20generate%20clinothems?%20An%20example%20of%20a%20large,%20asymmetric%20mounded%20drift%20in%20Upper%20Jurassic%20to%20Lower%20Cretaceous%20sediments%20from%20northwestern%20Australia&rft.jtitle=Geology%20(Boulder)&rft.au=Mantilla,%20O&rft.date=2022-03-24&rft.volume=50&rft.issue=6&rft.spage=741&rft.epage=745&rft.pages=741-745&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G50068.1&rft_dat=%3Cproquest_cross%3E2667261740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667261740&rft_id=info:pmid/&rfr_iscdi=true |