Loading…

Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia

Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Up...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2022-03, Vol.50 (6), p.741-745
Main Authors: Mantilla, O, Hernandez-Molina, F. J, Scarselli, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053
cites cdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053
container_end_page 745
container_issue 6
container_start_page 741
container_title Geology (Boulder)
container_volume 50
creator Mantilla, O
Hernandez-Molina, F. J
Scarselli, N
description Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments.
doi_str_mv 10.1130/G50068.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667261740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667261740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhU1podu00J8g6KXQOhnJli2fyrK0acNCL8nZzMqjjYMtuSOZTf5Uf2PUbg89Dbz5eO_BK4r3Ei6lrODqWgM05lK-KDayq6tSNUa9LDYAnSzbRlavizcxPgDIWrdmU_zeoRcD0XLCRCwOIaUwC7syk09RHMkT54-w0-hDuqc5fhFbL-gR52UiEZxAMSEf6bPA-DTPlHi0Yg6rH2gQA48uidGLu2XJ7jcrY4z5n4LYh1NWdkwJLYU1ikjDOP8NdZwr-MDp_kQxt_Jiu8bEOI34tnjlcIr07t-9KO6-fb3dfS_3P69_7Lb7ElVrUkmGBqN1BdgcdGs11pLQkdaHzh20srqD1hLoipTq0JCyBlBVDkE5I7N-UXw4-y4cfq25Rf8QVvY5sldN06pGtjVk6uOZshxiZHL9wuOM_NRL6P-s0Z_X6GVGP53RI4VoR_KWToGn4T9fUKoHBbpuq2fny47f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667261740</pqid></control><display><type>article</type><title>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</title><source>GeoScienceWorld</source><creator>Mantilla, O ; Hernandez-Molina, F. J ; Scarselli, N</creator><creatorcontrib>Mantilla, O ; Hernandez-Molina, F. J ; Scarselli, N</creatorcontrib><description>Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G50068.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>applied (geophysical surveys &amp; methods) ; Asymmetry ; Australasia ; Australia ; Bottom currents ; burial ; clastic sediments ; clinothems ; contourite ; cores ; Cretaceous ; currents ; Deep water ; deep-water environment ; Drift ; Exmouth Plateau ; Fossils ; Geology ; geophysical methods ; geophysical profiles ; geophysical surveys ; Geophysics ; Indian Ocean ; Jurassic ; lateral heterogeneity ; Lower Cretaceous ; marine environment ; Mesozoic ; northwestern Australia ; Offshore ; paleocirculation ; paleocurrents ; Progradation ; sed rocks, sediments ; Sediment ; Sedimentary petrology ; sedimentary structures ; Sediments ; seismic methods ; seismic profiles ; seismic stratigraphy ; surveys ; symmetry ; Trends ; Upper Jurassic ; Water masses</subject><ispartof>Geology (Boulder), 2022-03, Vol.50 (6), p.741-745</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jun 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</citedby><cites>FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G50068.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,38879,77594</link.rule.ids></links><search><creatorcontrib>Mantilla, O</creatorcontrib><creatorcontrib>Hernandez-Molina, F. J</creatorcontrib><creatorcontrib>Scarselli, N</creatorcontrib><title>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</title><title>Geology (Boulder)</title><description>Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments.</description><subject>applied (geophysical surveys &amp; methods)</subject><subject>Asymmetry</subject><subject>Australasia</subject><subject>Australia</subject><subject>Bottom currents</subject><subject>burial</subject><subject>clastic sediments</subject><subject>clinothems</subject><subject>contourite</subject><subject>cores</subject><subject>Cretaceous</subject><subject>currents</subject><subject>Deep water</subject><subject>deep-water environment</subject><subject>Drift</subject><subject>Exmouth Plateau</subject><subject>Fossils</subject><subject>Geology</subject><subject>geophysical methods</subject><subject>geophysical profiles</subject><subject>geophysical surveys</subject><subject>Geophysics</subject><subject>Indian Ocean</subject><subject>Jurassic</subject><subject>lateral heterogeneity</subject><subject>Lower Cretaceous</subject><subject>marine environment</subject><subject>Mesozoic</subject><subject>northwestern Australia</subject><subject>Offshore</subject><subject>paleocirculation</subject><subject>paleocurrents</subject><subject>Progradation</subject><subject>sed rocks, sediments</subject><subject>Sediment</subject><subject>Sedimentary petrology</subject><subject>sedimentary structures</subject><subject>Sediments</subject><subject>seismic methods</subject><subject>seismic profiles</subject><subject>seismic stratigraphy</subject><subject>surveys</subject><subject>symmetry</subject><subject>Trends</subject><subject>Upper Jurassic</subject><subject>Water masses</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkUFr3DAQhU1podu00J8g6KXQOhnJli2fyrK0acNCL8nZzMqjjYMtuSOZTf5Uf2PUbg89Dbz5eO_BK4r3Ei6lrODqWgM05lK-KDayq6tSNUa9LDYAnSzbRlavizcxPgDIWrdmU_zeoRcD0XLCRCwOIaUwC7syk09RHMkT54-w0-hDuqc5fhFbL-gR52UiEZxAMSEf6bPA-DTPlHi0Yg6rH2gQA48uidGLu2XJ7jcrY4z5n4LYh1NWdkwJLYU1ikjDOP8NdZwr-MDp_kQxt_Jiu8bEOI34tnjlcIr07t-9KO6-fb3dfS_3P69_7Lb7ElVrUkmGBqN1BdgcdGs11pLQkdaHzh20srqD1hLoipTq0JCyBlBVDkE5I7N-UXw4-y4cfq25Rf8QVvY5sldN06pGtjVk6uOZshxiZHL9wuOM_NRL6P-s0Z_X6GVGP53RI4VoR_KWToGn4T9fUKoHBbpuq2fny47f</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Mantilla, O</creator><creator>Hernandez-Molina, F. J</creator><creator>Scarselli, N</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20220324</creationdate><title>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</title><author>Mantilla, O ; Hernandez-Molina, F. J ; Scarselli, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>applied (geophysical surveys &amp; methods)</topic><topic>Asymmetry</topic><topic>Australasia</topic><topic>Australia</topic><topic>Bottom currents</topic><topic>burial</topic><topic>clastic sediments</topic><topic>clinothems</topic><topic>contourite</topic><topic>cores</topic><topic>Cretaceous</topic><topic>currents</topic><topic>Deep water</topic><topic>deep-water environment</topic><topic>Drift</topic><topic>Exmouth Plateau</topic><topic>Fossils</topic><topic>Geology</topic><topic>geophysical methods</topic><topic>geophysical profiles</topic><topic>geophysical surveys</topic><topic>Geophysics</topic><topic>Indian Ocean</topic><topic>Jurassic</topic><topic>lateral heterogeneity</topic><topic>Lower Cretaceous</topic><topic>marine environment</topic><topic>Mesozoic</topic><topic>northwestern Australia</topic><topic>Offshore</topic><topic>paleocirculation</topic><topic>paleocurrents</topic><topic>Progradation</topic><topic>sed rocks, sediments</topic><topic>Sediment</topic><topic>Sedimentary petrology</topic><topic>sedimentary structures</topic><topic>Sediments</topic><topic>seismic methods</topic><topic>seismic profiles</topic><topic>seismic stratigraphy</topic><topic>surveys</topic><topic>symmetry</topic><topic>Trends</topic><topic>Upper Jurassic</topic><topic>Water masses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mantilla, O</creatorcontrib><creatorcontrib>Hernandez-Molina, F. J</creatorcontrib><creatorcontrib>Scarselli, N</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mantilla, O</au><au>Hernandez-Molina, F. J</au><au>Scarselli, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia</atitle><jtitle>Geology (Boulder)</jtitle><date>2022-03-24</date><risdate>2022</risdate><volume>50</volume><issue>6</issue><spage>741</spage><epage>745</epage><pages>741-745</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>Clinoforms and clinothems are ubiquitous in shallow marine and shelf margin environments, where they show remarkable seaward progradation trends. Consensus holds that these features do not form in deepwater settings. This study describes an example of a large, asymmetric mounded deposit formed in Upper Jurassic to Lower Cretaceous sediments along the Exmouth Plateau (offshore northwestern Australia). Although it formed in deepwater environments, the deposit has previously been interpreted to reflect either a deltaic or shelf margin system based on clinoform and clinothem geometries. We support that this deposit shares similarities with a delta drift that evolved into a large, mounded drift (∼180 km in length, ∼120 km in width, and up to ∼1.7 km in sedimentary thickness) that exhibits two migration trends: one westward and the other northeastward. Three evolutionary phases are proposed: (1) an onset drift stage (ca. 146.5-143.5 Ma); (2) a growth drift stage (ca. 143.5-138.2 Ma); and (3) a burial stage (ca. 138.2 Ma), which marks the completion of the drift and a shift in depositional style. The drift asymmetry and clinoform orientations indicate the influence of a northward-flowing water mass with two main cores. Our analysis thus suggests that bottom currents can create complex deposits with geometries that resemble clinothems in deepwater environments.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G50068.1</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2022-03, Vol.50 (6), p.741-745
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_2667261740
source GeoScienceWorld
subjects applied (geophysical surveys & methods)
Asymmetry
Australasia
Australia
Bottom currents
burial
clastic sediments
clinothems
contourite
cores
Cretaceous
currents
Deep water
deep-water environment
Drift
Exmouth Plateau
Fossils
Geology
geophysical methods
geophysical profiles
geophysical surveys
Geophysics
Indian Ocean
Jurassic
lateral heterogeneity
Lower Cretaceous
marine environment
Mesozoic
northwestern Australia
Offshore
paleocirculation
paleocurrents
Progradation
sed rocks, sediments
Sediment
Sedimentary petrology
sedimentary structures
Sediments
seismic methods
seismic profiles
seismic stratigraphy
surveys
symmetry
Trends
Upper Jurassic
Water masses
title Can deepwater bottom currents generate clinothems? An example of a large, asymmetric mounded drift in Upper Jurassic to Lower Cretaceous sediments from northwestern Australia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20deepwater%20bottom%20currents%20generate%20clinothems?%20An%20example%20of%20a%20large,%20asymmetric%20mounded%20drift%20in%20Upper%20Jurassic%20to%20Lower%20Cretaceous%20sediments%20from%20northwestern%20Australia&rft.jtitle=Geology%20(Boulder)&rft.au=Mantilla,%20O&rft.date=2022-03-24&rft.volume=50&rft.issue=6&rft.spage=741&rft.epage=745&rft.pages=741-745&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G50068.1&rft_dat=%3Cproquest_cross%3E2667261740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a278t-e8ed85530a6b57c5a41eafe55b9fb52c5907ce053e229a8e2c80a23fa02f81053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667261740&rft_id=info:pmid/&rfr_iscdi=true