Loading…

Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning

Aspect-level sentiment classification, a fine-grained sentiment analysis task which provides entire and intensive results, has been a research focus in recent years. However, the performance of neural network models is largely limited by the small scale of datasets for aspect-level sentiment classif...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2022-06, Vol.245, p.108586, Article 108586
Main Authors: Xu, Guixian, Zhang, Zixin, Zhang, Ting, Yu, Shaona, Meng, Yueting, Chen, Sijin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-528dce43e195317e3ca8ec9295eabe37f844efbda79157c6b08fd674e2834e323
cites cdi_FETCH-LOGICAL-c334t-528dce43e195317e3ca8ec9295eabe37f844efbda79157c6b08fd674e2834e323
container_end_page
container_issue
container_start_page 108586
container_title Knowledge-based systems
container_volume 245
creator Xu, Guixian
Zhang, Zixin
Zhang, Ting
Yu, Shaona
Meng, Yueting
Chen, Sijin
description Aspect-level sentiment classification, a fine-grained sentiment analysis task which provides entire and intensive results, has been a research focus in recent years. However, the performance of neural network models is largely limited by the small scale of datasets for aspect-level sentiment classification due to the challenges to label such data. In this paper, we propose an aspect-level sentiment classification model based on Attention-Bidirectional Long Short-Term Memory (Attention-BiLSTM) model and transfer learning. Based on Attention-BiLSTM model, three models including Pre-training (PRET), Multitask learning (MTL), and Pre-training & Multitask learning (PRET+MTL) are proposed to transfer the knowledge obtained from document-level training of sentiment classification to aspect-level sentiment classification. Finally, the performance of the four models is verified on four datasets. Experiments show that proposed methods make up for the shortcomings of poor training of neural network models due to the small dataset of the aspect-level sentiment classification.
doi_str_mv 10.1016/j.knosys.2022.108586
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667853526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705122002623</els_id><sourcerecordid>2667853526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-528dce43e195317e3ca8ec9295eabe37f844efbda79157c6b08fd674e2834e323</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMOC56352GyyF6EWv6DiwXryELLJrKRuk5psC_33pqxnLzPD8L7vMA9C1wTPCCb17Xr27UM6pBnFlOaV5LI-QRMiBS1FhZtTNMENx6XAnJyji5TWGGclkRP0OU9bMEPZwx76IoEf3CaXwvQ6Jdc5owcXfNHqBLbIgx6Goyb48t4t31evxSbYbNTeFkPUPnUQix509M5_XaKzTvcJrv76FH08PqwWz-Xy7ellMV-WhrFqKDmV1kDFgDScEQHMaAmmoQ0H3QITnawq6FqrRUO4MHWLZWdrUQGVrAJG2RTdjLnbGH52kAa1Drvo80lF61pIzjits6oaVSaGlCJ0ahvdRseDIlgdMaq1GjGqI0Y1Ysy2u9EG-YO9g6iSceANWBczOGWD-z_gFxChfnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667853526</pqid></control><display><type>article</type><title>Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Elsevier</source><creator>Xu, Guixian ; Zhang, Zixin ; Zhang, Ting ; Yu, Shaona ; Meng, Yueting ; Chen, Sijin</creator><creatorcontrib>Xu, Guixian ; Zhang, Zixin ; Zhang, Ting ; Yu, Shaona ; Meng, Yueting ; Chen, Sijin</creatorcontrib><description>Aspect-level sentiment classification, a fine-grained sentiment analysis task which provides entire and intensive results, has been a research focus in recent years. However, the performance of neural network models is largely limited by the small scale of datasets for aspect-level sentiment classification due to the challenges to label such data. In this paper, we propose an aspect-level sentiment classification model based on Attention-Bidirectional Long Short-Term Memory (Attention-BiLSTM) model and transfer learning. Based on Attention-BiLSTM model, three models including Pre-training (PRET), Multitask learning (MTL), and Pre-training &amp; Multitask learning (PRET+MTL) are proposed to transfer the knowledge obtained from document-level training of sentiment classification to aspect-level sentiment classification. Finally, the performance of the four models is verified on four datasets. Experiments show that proposed methods make up for the shortcomings of poor training of neural network models due to the small dataset of the aspect-level sentiment classification.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2022.108586</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Attention ; BiLSTM ; Classification ; Data mining ; Datasets ; Knowledge management ; Machine learning ; Neural networks ; Sentiment analysis ; Sentiment classification ; Training ; Transfer learning</subject><ispartof>Knowledge-based systems, 2022-06, Vol.245, p.108586, Article 108586</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 7, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-528dce43e195317e3ca8ec9295eabe37f844efbda79157c6b08fd674e2834e323</citedby><cites>FETCH-LOGICAL-c334t-528dce43e195317e3ca8ec9295eabe37f844efbda79157c6b08fd674e2834e323</cites><orcidid>0000-0001-8815-479X ; 0000-0002-5871-2364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Xu, Guixian</creatorcontrib><creatorcontrib>Zhang, Zixin</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Yu, Shaona</creatorcontrib><creatorcontrib>Meng, Yueting</creatorcontrib><creatorcontrib>Chen, Sijin</creatorcontrib><title>Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning</title><title>Knowledge-based systems</title><description>Aspect-level sentiment classification, a fine-grained sentiment analysis task which provides entire and intensive results, has been a research focus in recent years. However, the performance of neural network models is largely limited by the small scale of datasets for aspect-level sentiment classification due to the challenges to label such data. In this paper, we propose an aspect-level sentiment classification model based on Attention-Bidirectional Long Short-Term Memory (Attention-BiLSTM) model and transfer learning. Based on Attention-BiLSTM model, three models including Pre-training (PRET), Multitask learning (MTL), and Pre-training &amp; Multitask learning (PRET+MTL) are proposed to transfer the knowledge obtained from document-level training of sentiment classification to aspect-level sentiment classification. Finally, the performance of the four models is verified on four datasets. Experiments show that proposed methods make up for the shortcomings of poor training of neural network models due to the small dataset of the aspect-level sentiment classification.</description><subject>Attention</subject><subject>BiLSTM</subject><subject>Classification</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Knowledge management</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><subject>Sentiment classification</subject><subject>Training</subject><subject>Transfer learning</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE1LAzEQhoMoWKv_wMOC56352GyyF6EWv6DiwXryELLJrKRuk5psC_33pqxnLzPD8L7vMA9C1wTPCCb17Xr27UM6pBnFlOaV5LI-QRMiBS1FhZtTNMENx6XAnJyji5TWGGclkRP0OU9bMEPZwx76IoEf3CaXwvQ6Jdc5owcXfNHqBLbIgx6Goyb48t4t31evxSbYbNTeFkPUPnUQix509M5_XaKzTvcJrv76FH08PqwWz-Xy7ellMV-WhrFqKDmV1kDFgDScEQHMaAmmoQ0H3QITnawq6FqrRUO4MHWLZWdrUQGVrAJG2RTdjLnbGH52kAa1Drvo80lF61pIzjits6oaVSaGlCJ0ahvdRseDIlgdMaq1GjGqI0Y1Ysy2u9EG-YO9g6iSceANWBczOGWD-z_gFxChfnM</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Xu, Guixian</creator><creator>Zhang, Zixin</creator><creator>Zhang, Ting</creator><creator>Yu, Shaona</creator><creator>Meng, Yueting</creator><creator>Chen, Sijin</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8815-479X</orcidid><orcidid>https://orcid.org/0000-0002-5871-2364</orcidid></search><sort><creationdate>20220607</creationdate><title>Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning</title><author>Xu, Guixian ; Zhang, Zixin ; Zhang, Ting ; Yu, Shaona ; Meng, Yueting ; Chen, Sijin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-528dce43e195317e3ca8ec9295eabe37f844efbda79157c6b08fd674e2834e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention</topic><topic>BiLSTM</topic><topic>Classification</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Knowledge management</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><topic>Sentiment classification</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guixian</creatorcontrib><creatorcontrib>Zhang, Zixin</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Yu, Shaona</creatorcontrib><creatorcontrib>Meng, Yueting</creatorcontrib><creatorcontrib>Chen, Sijin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guixian</au><au>Zhang, Zixin</au><au>Zhang, Ting</au><au>Yu, Shaona</au><au>Meng, Yueting</au><au>Chen, Sijin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning</atitle><jtitle>Knowledge-based systems</jtitle><date>2022-06-07</date><risdate>2022</risdate><volume>245</volume><spage>108586</spage><pages>108586-</pages><artnum>108586</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Aspect-level sentiment classification, a fine-grained sentiment analysis task which provides entire and intensive results, has been a research focus in recent years. However, the performance of neural network models is largely limited by the small scale of datasets for aspect-level sentiment classification due to the challenges to label such data. In this paper, we propose an aspect-level sentiment classification model based on Attention-Bidirectional Long Short-Term Memory (Attention-BiLSTM) model and transfer learning. Based on Attention-BiLSTM model, three models including Pre-training (PRET), Multitask learning (MTL), and Pre-training &amp; Multitask learning (PRET+MTL) are proposed to transfer the knowledge obtained from document-level training of sentiment classification to aspect-level sentiment classification. Finally, the performance of the four models is verified on four datasets. Experiments show that proposed methods make up for the shortcomings of poor training of neural network models due to the small dataset of the aspect-level sentiment classification.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2022.108586</doi><orcidid>https://orcid.org/0000-0001-8815-479X</orcidid><orcidid>https://orcid.org/0000-0002-5871-2364</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2022-06, Vol.245, p.108586, Article 108586
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2667853526
source Library & Information Science Abstracts (LISA); Elsevier
subjects Attention
BiLSTM
Classification
Data mining
Datasets
Knowledge management
Machine learning
Neural networks
Sentiment analysis
Sentiment classification
Training
Transfer learning
title Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aspect-level%20sentiment%20classification%20based%20on%20attention-BiLSTM%20model%20and%20transfer%20learning&rft.jtitle=Knowledge-based%20systems&rft.au=Xu,%20Guixian&rft.date=2022-06-07&rft.volume=245&rft.spage=108586&rft.pages=108586-&rft.artnum=108586&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2022.108586&rft_dat=%3Cproquest_cross%3E2667853526%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-528dce43e195317e3ca8ec9295eabe37f844efbda79157c6b08fd674e2834e323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667853526&rft_id=info:pmid/&rfr_iscdi=true