Loading…
Optimization of gas carburizing treatment parameters of low carbon steel using Taguchi and grey relational analysis (TA-GRA)
This work aims to optimize the micro-hardness (H), thickness of the hardened layer (THL), carbon contents (%C) and surface roughness (Ra) of XC10 steel using a gas carburizing thermochemical treatment. The combination of Taguchi and grey relational analysis (TA-GRA) was applied with 9 experiments on...
Saved in:
Published in: | International journal of advanced manufacturing technology 2022-06, Vol.120 (11-12), p.7937-7949 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2340-611167da4be1353aa323fa63d2d59e2c0721f11406fe3f5d8b9983016fe9be063 |
---|---|
cites | cdi_FETCH-LOGICAL-c2340-611167da4be1353aa323fa63d2d59e2c0721f11406fe3f5d8b9983016fe9be063 |
container_end_page | 7949 |
container_issue | 11-12 |
container_start_page | 7937 |
container_title | International journal of advanced manufacturing technology |
container_volume | 120 |
creator | Touati, Sofiane Ghelani, Laala Zemmouri, Amina Boumediri, Haithem |
description | This work aims to optimize the micro-hardness (H), thickness of the hardened layer (THL), carbon contents (%C) and surface roughness (Ra) of XC10 steel using a gas carburizing thermochemical treatment. The combination of Taguchi and grey relational analysis (TA-GRA) was applied with 9 experiments on the basis of L9 orthogonal design using the following factors: carbon flow rate (0.9%, 1% and 1.2%), temperature (900°, 920° and 940°) and holding time (4 h, 5 h and 6 h). A statistical analysis of the results was carried out on the basis of the
S
/
N
ratio and an ANOVA to identify the most significant parameters affecting the experimental responses. A desirability function approach was established to find the optimal factors to maximize H, THL and %C and minimize Ra. The gas carburizing treatment has shown a strong increase in the micro-hardness with about 140%, the thickness of the hardened layer with more than 1400 μm, carbon content 775% and good decrease in the surface roughness (Ra) with 140%. |
doi_str_mv | 10.1007/s00170-022-09302-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667952468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667952468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2340-611167da4be1353aa323fa63d2d59e2c0721f11406fe3f5d8b9983016fe9be063</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8BL3qITpI2bY_LoqsgLMh6Dmmb1iz9Z5Iiu_jhzW4Fb15mmOH3HjMPoWsK9xQgeXAANAECjBHIOIR6gmY04pxwoPEpmgETKeGJSM_RhXPbgAsq0hn6Xg_etGavvOk73Fe4Vg4XyuajNXvT1dhbrXyrO48HZVWrvbbuwDX915ELKue1bvDoDvhG1WPxYbDqSlxbvcNWN0dv1YSdanbOOHy7WZDV2-LuEp1VqnH66rfP0fvT42b5TF7Xq5fl4pUUjEdABKVUJKWKck15zJXijFdK8JKVcaZZAQmjFaURiErzKi7TPMvS8HcYs1yD4HN0M_kOtv8ctfNy2482XOMkEyLJYhaJNFBsogrbO2d1JQdrWmV3koI8pCynlGVIWR5TlhBEfBK5AHe1tn_W_6h-AOCegAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667952468</pqid></control><display><type>article</type><title>Optimization of gas carburizing treatment parameters of low carbon steel using Taguchi and grey relational analysis (TA-GRA)</title><source>Springer Link</source><creator>Touati, Sofiane ; Ghelani, Laala ; Zemmouri, Amina ; Boumediri, Haithem</creator><creatorcontrib>Touati, Sofiane ; Ghelani, Laala ; Zemmouri, Amina ; Boumediri, Haithem</creatorcontrib><description>This work aims to optimize the micro-hardness (H), thickness of the hardened layer (THL), carbon contents (%C) and surface roughness (Ra) of XC10 steel using a gas carburizing thermochemical treatment. The combination of Taguchi and grey relational analysis (TA-GRA) was applied with 9 experiments on the basis of L9 orthogonal design using the following factors: carbon flow rate (0.9%, 1% and 1.2%), temperature (900°, 920° and 940°) and holding time (4 h, 5 h and 6 h). A statistical analysis of the results was carried out on the basis of the
S
/
N
ratio and an ANOVA to identify the most significant parameters affecting the experimental responses. A desirability function approach was established to find the optimal factors to maximize H, THL and %C and minimize Ra. The gas carburizing treatment has shown a strong increase in the micro-hardness with about 140%, the thickness of the hardened layer with more than 1400 μm, carbon content 775% and good decrease in the surface roughness (Ra) with 140%.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09302-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Carbon ; Carbon content ; Computer-Aided Engineering (CAD ; Engineering ; Flow velocity ; Gas carburizing ; Industrial and Production Engineering ; Low carbon steels ; Mechanical Engineering ; Media Management ; Microhardness ; Optimization ; Original Article ; Parameter identification ; Signal to noise ratio ; Statistical analysis ; Surface roughness ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2022-06, Vol.120 (11-12), p.7937-7949</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2340-611167da4be1353aa323fa63d2d59e2c0721f11406fe3f5d8b9983016fe9be063</citedby><cites>FETCH-LOGICAL-c2340-611167da4be1353aa323fa63d2d59e2c0721f11406fe3f5d8b9983016fe9be063</cites><orcidid>0000-0002-9578-0948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Touati, Sofiane</creatorcontrib><creatorcontrib>Ghelani, Laala</creatorcontrib><creatorcontrib>Zemmouri, Amina</creatorcontrib><creatorcontrib>Boumediri, Haithem</creatorcontrib><title>Optimization of gas carburizing treatment parameters of low carbon steel using Taguchi and grey relational analysis (TA-GRA)</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This work aims to optimize the micro-hardness (H), thickness of the hardened layer (THL), carbon contents (%C) and surface roughness (Ra) of XC10 steel using a gas carburizing thermochemical treatment. The combination of Taguchi and grey relational analysis (TA-GRA) was applied with 9 experiments on the basis of L9 orthogonal design using the following factors: carbon flow rate (0.9%, 1% and 1.2%), temperature (900°, 920° and 940°) and holding time (4 h, 5 h and 6 h). A statistical analysis of the results was carried out on the basis of the
S
/
N
ratio and an ANOVA to identify the most significant parameters affecting the experimental responses. A desirability function approach was established to find the optimal factors to maximize H, THL and %C and minimize Ra. The gas carburizing treatment has shown a strong increase in the micro-hardness with about 140%, the thickness of the hardened layer with more than 1400 μm, carbon content 775% and good decrease in the surface roughness (Ra) with 140%.</description><subject>CAE) and Design</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Flow velocity</subject><subject>Gas carburizing</subject><subject>Industrial and Production Engineering</subject><subject>Low carbon steels</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microhardness</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Signal to noise ratio</subject><subject>Statistical analysis</subject><subject>Surface roughness</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8BL3qITpI2bY_LoqsgLMh6Dmmb1iz9Z5Iiu_jhzW4Fb15mmOH3HjMPoWsK9xQgeXAANAECjBHIOIR6gmY04pxwoPEpmgETKeGJSM_RhXPbgAsq0hn6Xg_etGavvOk73Fe4Vg4XyuajNXvT1dhbrXyrO48HZVWrvbbuwDX915ELKue1bvDoDvhG1WPxYbDqSlxbvcNWN0dv1YSdanbOOHy7WZDV2-LuEp1VqnH66rfP0fvT42b5TF7Xq5fl4pUUjEdABKVUJKWKck15zJXijFdK8JKVcaZZAQmjFaURiErzKi7TPMvS8HcYs1yD4HN0M_kOtv8ctfNy2482XOMkEyLJYhaJNFBsogrbO2d1JQdrWmV3koI8pCynlGVIWR5TlhBEfBK5AHe1tn_W_6h-AOCegAE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Touati, Sofiane</creator><creator>Ghelani, Laala</creator><creator>Zemmouri, Amina</creator><creator>Boumediri, Haithem</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9578-0948</orcidid></search><sort><creationdate>20220601</creationdate><title>Optimization of gas carburizing treatment parameters of low carbon steel using Taguchi and grey relational analysis (TA-GRA)</title><author>Touati, Sofiane ; Ghelani, Laala ; Zemmouri, Amina ; Boumediri, Haithem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2340-611167da4be1353aa323fa63d2d59e2c0721f11406fe3f5d8b9983016fe9be063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAE) and Design</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Flow velocity</topic><topic>Gas carburizing</topic><topic>Industrial and Production Engineering</topic><topic>Low carbon steels</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microhardness</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Signal to noise ratio</topic><topic>Statistical analysis</topic><topic>Surface roughness</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touati, Sofiane</creatorcontrib><creatorcontrib>Ghelani, Laala</creatorcontrib><creatorcontrib>Zemmouri, Amina</creatorcontrib><creatorcontrib>Boumediri, Haithem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touati, Sofiane</au><au>Ghelani, Laala</au><au>Zemmouri, Amina</au><au>Boumediri, Haithem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of gas carburizing treatment parameters of low carbon steel using Taguchi and grey relational analysis (TA-GRA)</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>120</volume><issue>11-12</issue><spage>7937</spage><epage>7949</epage><pages>7937-7949</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This work aims to optimize the micro-hardness (H), thickness of the hardened layer (THL), carbon contents (%C) and surface roughness (Ra) of XC10 steel using a gas carburizing thermochemical treatment. The combination of Taguchi and grey relational analysis (TA-GRA) was applied with 9 experiments on the basis of L9 orthogonal design using the following factors: carbon flow rate (0.9%, 1% and 1.2%), temperature (900°, 920° and 940°) and holding time (4 h, 5 h and 6 h). A statistical analysis of the results was carried out on the basis of the
S
/
N
ratio and an ANOVA to identify the most significant parameters affecting the experimental responses. A desirability function approach was established to find the optimal factors to maximize H, THL and %C and minimize Ra. The gas carburizing treatment has shown a strong increase in the micro-hardness with about 140%, the thickness of the hardened layer with more than 1400 μm, carbon content 775% and good decrease in the surface roughness (Ra) with 140%.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09302-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9578-0948</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2022-06, Vol.120 (11-12), p.7937-7949 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2667952468 |
source | Springer Link |
subjects | CAE) and Design Carbon Carbon content Computer-Aided Engineering (CAD Engineering Flow velocity Gas carburizing Industrial and Production Engineering Low carbon steels Mechanical Engineering Media Management Microhardness Optimization Original Article Parameter identification Signal to noise ratio Statistical analysis Surface roughness Thickness |
title | Optimization of gas carburizing treatment parameters of low carbon steel using Taguchi and grey relational analysis (TA-GRA) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20gas%20carburizing%20treatment%20parameters%20of%20low%20carbon%20steel%20using%20Taguchi%20and%20grey%20relational%20analysis%20(TA-GRA)&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Touati,%20Sofiane&rft.date=2022-06-01&rft.volume=120&rft.issue=11-12&rft.spage=7937&rft.epage=7949&rft.pages=7937-7949&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09302-0&rft_dat=%3Cproquest_cross%3E2667952468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2340-611167da4be1353aa323fa63d2d59e2c0721f11406fe3f5d8b9983016fe9be063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667952468&rft_id=info:pmid/&rfr_iscdi=true |